难点解析-冀教版8年级下册期末试题带答案详解(轻巧夺冠)_第1页
难点解析-冀教版8年级下册期末试题带答案详解(轻巧夺冠)_第2页
难点解析-冀教版8年级下册期末试题带答案详解(轻巧夺冠)_第3页
难点解析-冀教版8年级下册期末试题带答案详解(轻巧夺冠)_第4页
难点解析-冀教版8年级下册期末试题带答案详解(轻巧夺冠)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,2),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,……,按此规律继续作下去,得到等边三角形O2020A2020A2021,则点A2023的纵坐标为()A.()2021 B.()2022 C.()2023 D.()20242、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是()A.相 B.马 C.炮 D.兵3、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为()A.1 B.2 C.3 D.44、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是()A.-3 B.-1 C.1 D.35、下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率 B.“现代”汽车每百公里的耗油量C.“国家宝藏”专栏电视节目的收视率 D.乘坐飞机的旅客是否携带了违禁物品6、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是()A.2 B.0.02 C.4 D.0.047、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.2、如图,在平面直角坐标系中,点在第一象限,若点A关于x轴的对称点B在直线上,则m的值为_________.3、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.4、若y=mx|m﹣1|是正比例函数,则m的值______.5、如图,正比例函数y=kx(k≠0)的图像经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为_____.6、已知:一次函数y=kx+b(k>0)的图像过点(-1,0),则不等式k(x-1)+b>0的解集是_______.7、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.8、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______三、解答题(7小题,每小题10分,共计70分)1、如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.2、为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x<60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示,其余类推)(1)七(3)班共有多少名学生?(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.3、在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD=∠BDE;(2)用等式表示线段CD与BE的数量关系,并证明;(3)用等式表示线段AD,AB,BE之间的数量关系(直接写出).4、为了做好防疫工作,学校准备购进一批消毒液.已知A型消毒液7元/瓶,B型消毒液9元/瓶.学校准备购进这两种消毒液共90瓶.(1)写出购买所需总费用w元与A瓶个数x之间的函数表达式;(2)若B型消毒液的数量不少于A型消毒液数量的,请设计最省钱的购买方案,并求出最少费用.5、如图,平面直角坐标系中有点A(-1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.6、已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是;(2)函数y的取值范围是;(3)当x=时,函数有最大值为;(4)当x的取值范围是时,y随x的增大而增大.7、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a=;b=;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)-参考答案-一、单选题1、B【解析】【分析】根据30°角所对的直角边等于斜边的一半得出O1A1=OA1=1,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A1的纵坐标为1;点A2的纵坐标为(),点A3的纵坐标为()2,以此类推,从中得出规律,即可求出答案.【详解】解:∵三角形OAA1是等边三角形,∴OA1=OA=2,∠AOA1=60°,∴∠O1OA1=30°.在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,∴O1A1=OA1=1,即点A1的纵坐标为1,同理,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A2的纵坐标为()1,点A3的纵坐标为()2,…∴点A2023的纵坐标为()2022.故选:B.【点睛】此题考查了规律型:点的坐标,等边三角形的性质,解答此题的关键是通过认真分析,根据30°角所对的直角边等于斜边的一半,从中发现规律.2、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.3、B【解析】【分析】先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.【详解】解:,,,(等腰三角形的三线合一),即点是的中点,为的中点,是的中位线,,故选:B.【点睛】本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.4、A【解析】【分析】由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.【详解】解:当m-1<m+1时,y1>y2,y随x的增大而减小,∴k+2<0,得k<﹣2.故选:A.【点睛】本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.5、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;C、对“国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解析】【分析】先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.【详解】解:该班级学生这次体能评定为“较差”的频数是:则该班级学生这次体能评定为“较差”的频率是:故选D【点睛】本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.7、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:B.【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.二、填空题1、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.2、2【解析】【分析】根据关于x轴的对称点的坐标特点可得B(3,-m),然后再把B点坐标代入y=-x+1可得m的值.【详解】解:∵点A(3,m),∴点A关于x轴的对称点B(3,-m),∵B在直线y=-x+1上,∴-m=-3+1=-2,∴m=2,故答案为:2.【点睛】此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.3、##【解析】【分析】根据x的值选择相应的函数关系式求解函数值即可解答.【详解】解:∵x=,∴1<x<2,∴y=-x+2=-+2=,即输出的y值为,故答案为:.【点睛】本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.4、2【解析】【分析】根据次数等于1,且系数不等于零求解即可.【详解】解:由题意得|m-1|=1,且m≠0,解得m=2,故答案为:2.【点睛】本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.5、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6、x>0【解析】【分析】先把(−1,0)代入y=kx+b得b=k,则k(x−1)+b>0化为k(x−1)+k>0,然后解关于x的不等式即可.【详解】解:把(−1,0)代入y=kx+b得−k+b=0,解b=k,则k(x−1)+b>0化为k(x−1)+k>0,而k>0,所以x−1+1>0,解得x>0.故答案为:x>0.【点睛】本题考查了一次函数与一元一次不等式,把点(−1,0)代入解析式求得k与b的关系是解题的关键.7、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.8、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.三、解答题1、(1)见解析(2)见解析【解析】【分析】(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.(1)如图,DE、BF为所作;(2)证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵CE=CD,∴CE=AB,∵BF平分∠ABC,∴∠ABF=∠CBF,∵AFBC,∴∠CBF=∠F,∴∠ABF=∠F,∴AB=AF,∴CE=AF,即CB+BE=AD+DF,∴BE=DF,∵BEDF,∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.2、(1)七(3)班共有50名学生;(2)合格率为80%以及优秀率为18%均小于定下的目标;(3)合格率及优秀率均达到目标.理由见解析.【解析】【分析】(1)计算各频数之和即可求解;(2)计算得出合格率和优秀率,与目标值比较即可;(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.(1)解:4+6+9+10+12+9=50(名),答:七(3)班共有50名学生;(2)解:x≥90的学生人数有9人,则优秀率为950×100%=18%<25%;x≥60的学生人数有9+10+12+9=40人,则合格率为4050×100%=80%<90%;答:合格率为80%以及优秀率为18%均小于定下的目标;(3)解:合格率及优秀率均达到目标.理由如下:设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,依题意得:3x+x-10=50,解得:x=15,合格人数为3x=3×15=45(人),则合格率为4550×100%=90%;优秀人数为x=15(人),则合格率为1550×100%=30%>25%;答:合格率及优秀率均达到目标.【点睛】本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.3、(1)见解析(2),证明见解析(3)【解析】【分析】(1)证明∠CAD和∠BDE都与∠ADC互余即可;(2)过E作EG⊥CB于G,利用△ACD≌△DGE可得CD=EG,AC=DG,从而可证明△BGE是等腰直角三角形,即可得到BE=CD;(3)由AB2=AC2+BC2=2AC2,AC2=AD2−CD2可得AB2=2(AD2−CD2),再根据BE=CD即可得到线段AD,AB,BE之间的数量关系.(1)解:(1)补全图形如图所示.证明:∵正方形ADEF,∴∠ADE=90°,∴∠BDE=180°−∠ADE−∠ADC=90°−∠ADC,∵∠C=90°,∴∠CAD=90°−∠ADC,∴∠CAD=∠BDE;(2)解:.证明:过E作EG⊥CB于G,如图:∵四边形ADEF是正方形,∴AD=DE,∵EG⊥CB,∴∠G=90°=∠C,在△ACD和△DGE中,,∴△ACD≌△DGE(AAS),∴CD=EG,AC=DG,∵AC=BC,∴DG=BC,∴DG−DB=BC−DB,即BG=CD,∴BG=EG,∴△BGE是等腰直角三角形,∴BE=BG,∴BE=CD;(3)解:.理由如下:∵∠C=90°,AC=BC,∴AB2=AC2+BC2=2AC2,AC2=AD2−CD2,∴AB2=2(AD2−CD2),而BE=CD,∴CD2=BE2,∴AB2=2(AD2−BE2),即AB2=2AD2−BE2.【点睛】本题考查等腰直角三角形、正方形、全等三角形的性质及应用,解题的关键是构造全等三角形,熟练掌握勾股定理的应用.4、(1)w=-2x+810(2)最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元【解析】【分析】(1)A瓶个数为x,则B瓶个数为(90-x),根据题意列式计算即可;(2)根据B型消毒液的数量不少于A型消毒液数量的,可以得到A型消毒液数量的取值范围,再根据一次函数的性质,即可求得最省钱的购买方案,计算出最少费用.(1)解:A瓶个数为x,则B瓶个数为(90-x),依题意可得:w=7x+9(90-x)=-2x+810;(2)解:∵B型消毒液的数量不少于A型消毒液数量的,∴,解得,由(1)知w=﹣2x+810,∴w随x的增大而减小,∴当x=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣x=23,答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是列出相应的方程组和列出相应的函数关系式,利用一次函数的性质和不等式的性质解答.5、(1)(-2,3)(2)不变,1【解析】【分析】(1)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=2,AE=BO=1,即可得出点C的坐标;(2)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=a,AE=BO=1,从而OE=a=1,即可得出点C的坐标为(-a,a+1),据此可得c+d的值不变.(1)解:如图1中,过点C作CE⊥y轴于E,则∠CEB=∠BOA.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△ABO中,,∴△BCE≌△ABO(AAS),∵A(-1,0),B(0,2),∴AO=BE=1,OB=EC=2,∴OE=1+2=3,∴C(-2,3),故答案为:(-2,3);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论