




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如果,那么的结果是(
)A. B. C. D.2、如图,菱形ABCD中,∠BAD=60°,AC、BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC,AD于点F、G,连结OG、AE.则下列结论:①OG=AB;
②四边形ABDE是菱形;③;其中正确的是(
)A.①② B.①③ C.②③ D.①②③3、在如图所示的网格中,以点为位似中心,四边形的位似图形是(
)A.四边形 B.四边形C.四边形 D.四边形4、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(
)A. B. C. D.5、在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个 B.5个 C.6个 D.7个6、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.2二、多选题(6小题,每小题2分,共计12分)1、已知四边形是平行四边形,再从①,②,③,④四个条件中选两个作为补充条件后,使得四边形是正方形,其中正确的是(
)A.①② B.②③ C.①③ D.②④2、已知反比例函数y=﹣,则下列结论错误的是()A.点(1,2)在它的图象上 B.其图象分别位于第一、三象限C.y随x的增大而增大 D.如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上3、下列方程中,有实数根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=04、用配方法解下列方程,配方错误的是(
)A.化为 B.化为C.化为 D.化为5、下列方程中是一元二次方程的有(
)A.B.C.D.E.F.6、下列命题中不是真命题的是(
)A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、若,则________.2、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.3、如图,在平面直角坐标系中,一条过原点的直线与反比例函数的图象x相交于两点,若,,则该反比例函数的表达式为______.4、如图,在平面直角坐标系中,长方形OABC的边OA在x轴上,OC在y轴上,OA=1,OC=2,对角线AC的垂直平分线交AB于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为AE为腰的等腰三角形,则点P的坐标为____.5、如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为________.6、如图,在边长为1的正方形ABCD中,等边△AEF的顶点E、F分别在边BC和CD上则下列结论:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正确的有______(用序号填写)7、在数学活动课上,老师带领数学小组测量大树的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子离为2m,那么这棵大树高___________m.8、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.四、解答题(6小题,每小题10分,共计60分)1、(1)阅读理解如图,点,在反比例函数的图象上,连接,取线段的中点.分别过点,,作轴的垂线,垂足为,,,交反比例函数的图象于点.点,,的横坐标分别为,,.小红通过观察反比例函数的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF,由此得出一个关于,,之间数量关系的命题:若,则______.(2)证明命题小东认为:可以通过“若,则”的思路证明上述命题.小晴认为:可以通过“若,,且,则”的思路证明上述命题.请你选择一种方法证明(1)中的命题.2、已知==,求的值.3、如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?4、解一元二次方程(1)(2)5、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少10千克,现该商场要保证每天盈利8000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?6、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.-参考答案-一、单选题1、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.2、D【解析】【分析】证明四边形ABDE为平行四边形可得OB=OD,由菱形ABCD可得AG=DG,根据三角形中位线定理可判断①;根据等边三角形的性质和判定可得△ABD为等边三角形AB=BD,从而可判断平行四边形ABDE是菱形,由此判断②;借助相似三角形的性质和判定,三角形中线有关的面积问题可判断③.【详解】解:∵四边形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四边形ABDE是平行四边形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位线,∴OG=AB,故①正确;∵∠BAD=60°,AB=AD,∴△BAD是等边三角形,∴BD=AB,∴是菱形,故②正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;故③正确;故选:D.【考点】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识.判断①的关键是三角形中位线定理的运用,②的关键是利用等边三角形证明BD=AB;③的关键是通过相似得出面积之间的关系.3、A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形的位似图形是四边形.故选:A【考点】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.4、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.5、C【解析】【分析】根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.【详解】解:ABC的三边之比为,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE∽△ABC的格点三角形一共有6个,故选:C.【考点】本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.6、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.二、多选题1、ACD【解析】【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【详解】解:A、①②:由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,故A符合题意;B、②③:由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,故B不符合题意;C、①③:由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,故C符合题意;D、②④:由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,故D符合题意;故选ACD.【考点】本题考查了正方形的判定方法:先判定四边形是菱形,再判定四边形是矩形;或先判定四边形是矩形,再判定四边形是菱形;那么四边形一定是正方形;熟练掌握正方形的判定方法是解题的关键.2、ABC【解析】【分析】根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】A、将x=1代入y=-得到y=-2≠2,∴点(1,2)不在反比例函数y=-2x的图象上,故本选项错误;B、因为比例系数为-2,则函数图象过二、四象限,故本选项错误;C、在每一象限内y随x的增大而增大,故本选项错误.D、如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上,故本选项正确;故选:ABC.【考点】本题考查了反比例函数的性质,熟悉反比例函数的图象是解题的关键.3、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C选项正确,D选项错误.【详解】A.,解得:,,方程有实数根,A选项正确;B.,解得:,,方程有实数根,B选项正确;C.,,,,方程有实数根,C选项正确;D.,,,,方程无实数根,D选项错误.故选:ABC.【考点】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.4、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论.【详解】A.化为,正确,不符合题意;B.化为,错误,符合题意;C.化为,正确,不符合题意;D.化为,错误,符合题意.故选:BD.【考点】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键.5、BCD【解析】【分析】根据一元二次方程的定义对6个选项逐一进行分析.【详解】A中最高次数是3不是2,故本选项错误;B符合一元二次方程的定义,故本选项正确;C原式可化为4x2—=0,符合一元二次方程的定义,故本选项正确;D原式可化为2x2十x-1=0,符合一元二次方程的定义,故本选项正确;E原式可化为2x+1=0,不符合一元二次方程的定义,故本选项错误;Fax2+bx+c=0,只有在满足a≠0的条件下才是一元二次方程,故本选项错误.故答案为:BCD【考点】本题考查了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.6、ABD【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断即可.【详解】A选项:有一组邻边相等的平行四边形是菱形,故原命题错误,是假命题,符合题意;B选项:一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,符合题意;C选项:两条对角线相等的平行四边形是矩形,故原命题正确,是真命题,不符合题意;D选项:两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,是假命题,符合题意.故选:ABD.【考点】考查了平行四边形、菱形、矩形和正方形的判定,解题关键是熟练掌握特殊四边形的判定方法.三、填空题1、【解析】【分析】设,,代入求解即可.【详解】由可设,,k是非零整数,则.故答案为:.【考点】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.2、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.3、y=.【解析】【分析】由正比例函数与反比例函数的两个交点关于原点对称,可得m2-7=2,由点A在第三象限可求m的值,即可求点A坐标,代入解析式可求解.【详解】解:∵一条过原点的直线与反比例函数的图象相交于A、B两点,∴点A与点B关于原点对称,∴m2-7=2,∴m=±3,∵点A在第三象限,∴m<0,∴m=-3,∴点A(-3,-2),∵点A在反比例函数的图象上,∴k=-3×(-2)=6,∴反比例函数的表达式为y=,故答案为:y=.【考点】本题考查了反比例函数与一次函数的交点问题,掌握正比例函数与反比例函数的两个交点关于原点对称是本题的关键.4、,或【解析】【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案.【详解】∵对角线AC的垂直平分线交AB于点E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m,则BE=2-m,CE=m,∴在Rt∆BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),设点P坐标为(0,y),∵△AEP是以为AE为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,当EP=AE,则(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴点P的坐标为,,,故答案是:,,.【考点】本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.5、【解析】【详解】解:如图所示,连接EG,由旋转可知△ABF≌△ADE,∴DE=BF,AE=AF,∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5-x=BF,FG=EG=BF+BG=8-x,∵∠C=90°,∴CE2+CG2=EG2即x2+22=(8−x)2解得x=,∴CE的长为,故答案为:.【考点】本题主要考查了正方形的性质以及旋转的性质,解决该题的关键是根据勾股定理列方程.6、①②④【解析】【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据等边三角形的边长求得直角三角形的边长,从而求得面积③的正误,根据勾股定理列方程可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;∵正方形ABCD的边长为1,③说法错误,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,设BE=DF=x,∴CE=CF=1-x,(不合题意,舍去),∴EF=;④说法正确;∴正确的有①②④.故答案为①②④.【考点】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大.7、9【解析】【分析】根据同一时刻影长与物高成比例,先求出CE,再求AB即可.【详解】解:延长AD交BC延长线于E,根据同一时刻影长与物高成比例可得CE:CD=1:1.4,∵CD=2m,∴CE=m,∴BE=BC+CE=5+=m,∴BE:AB=1:1.4,∴AB=9m.故答案为:9.【考点】本题考查平行投影问题,掌握平行摄影的原理是同一时刻影长与物高成比例是解题关键.8、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.四、解答题1、(1);(2)证明见解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比较大小.【详解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考点】本题考查反比例函数图形上的点的坐标特征,反比例函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、-1【解析】【分析】设===k,则a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加减消元法可计算出a=2k,b=k,c=3k,然后把a=2k,b=k,c=3k代入中进行分式的化简求值即可.【详解】解:设===k,则a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分别减去上述三个式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考点】本题考查了比例的性质,掌握设比法求值是解题关键.3、(1)t,12﹣t,15﹣2t,2t(2)t=5s时四边形APQB是平行四边形(3)当t=4s时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)AP=t,DP=12﹣t,BQ=15﹣2t,CQ=2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形,∴t=15﹣2t,解得t=5,∴t=5s时四边形APQB是平行四边形;(3)由AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,如图1,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护理学围手术期护理知识考核试题答案及解析
- 2025年骨科常见骨折处理与固定技术考试答案及解析
- 2025年药剂学药品配制与调剂流程检测答案及解析
- 2025年全科医生基础知识综合能力模拟考试答案及解析
- 2025年呼吸内科呼吸功能评估与氧疗技术考核答案及解析
- 2025年眩晕科病例分析与治疗模拟考试答案及解析
- 2025年泌尿外科患者的膀胱癌手术模拟考试答案及解析
- 2025年急诊医学多发伤患者的抢救处理技巧考核答案及解析
- 2025年中医针灸科经络穴位考核答案及解析
- 2025年药剂学药物调剂操作规范答案及解析
- spc培训教学课件
- 变电站建设重点与风险控制措施
- 房屋维护管理办法细则
- 2025年中国远洋渔业行业发展运行现状及投资潜力预测报告
- 卵黄囊瘤影像诊断
- 2025年食品安全员业务培训考试题库(答案+解析)
- 二手机械买卖合同标准版
- 2025年黑龙江省绥化市中考物理试卷(含答案)
- 广东省汕头市2024-2025学年高二下学期期末教学质量监测英语试卷(含答案)
- 第十三章 内能(新课预习 培优卷)(含答案)2025-2026学年人教版九年级全一册物理
- 高中物理学科教学装备配置方案
评论
0/150
提交评论