版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鲁教版(五四制)8年级数学下册试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如果,那么的值是()A. B. C. D.2、在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B.C. D.3、在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A. B. C. D.4、如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1) B.(﹣1,2)C.(﹣9,1)或(9,﹣1) D.(﹣3,﹣1)或(3,1)5、社区医院十月份接种了新冠疫苗100份,十二月份接种了392份.设该社区医院平均每月接种疫苗的增长率为x,那么x满足的方程是()A.100(1+x)2=392 B.392(1﹣x)2=100C.100(1+2x)2=392 D.100(1+x2)=3926、2021年上半年我国成功发射了天和核心舱、天舟二号货运飞船和神舟十二号载人飞船,中国的太空经济时代即将到来.太空基金会发布新闻稿指出,2018年的全球航天经济总量为80亿美元,2020年全球航天经济总量再创新高,达到3850亿美元,假设2018年到2020年每年的平均增长率为x,则可列方程为()A.80(1+x)=3850 B.80x=3850C.80(1+x)3=3850 D.80(1+x)2=38507、下列方程中是一元二次方程的是()A.3x3+x=2 B.x2-=1 C.2x2+3xy-5=0 D.x2+x+2=08、如图,在矩形纸片ABCD中,AB=6,BC=8,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,则BM的长度是()A. B.4 C. D.5第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、若(x,y,z均不为0),则___________.2、49的算术平方根是_______,-64的立方根是_______,的倒数是_______.3、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合)且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个结论:①△OEF是等腰直角三角形;②△OEF面积的最小值是;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.所有正确结论的序号是_________________________4、已知:在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,四边形EHFG是_____________.5、将一张长方形纸条沿折叠后,与交于点,若,则的度数是__.6、如图,在正方形ABCD中,AB=2,E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN.则MN的长为_________.7、若,则的值是_______.三、解答题(7小题,每小题10分,共计70分)1、(1)解方程:x2+4x﹣21=0(2)先化简:÷(),再求代数式的值,其中是方程x2﹣2x=4的一个根.(3)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,满足|x1x2|﹣x1﹣x2=0,求k的值.2、为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年10月,国内某企业口罩出口订单额为100万元,2020年12月该企业口罩出口订单额为121万元.(1)求该企业2020年10月到12月口罩出口订单额的月平均增长率;(2)按照(1)的月平均增长率,预计该企业2021年1月口罩出口订单额能否达到140万元?3、如图所示,在△ABC中,∠C=30°,BC=20,AC=16,E为BC中点.动点P从点B出发,沿BE方向匀速运动,速度为每秒1个单位长度;同时,点Q从点C出发,沿CE方向匀速运动,速度为每秒1个单位长度,当一个点停止移动时,另一个点也立即停止移动.过点P作PD//AC,交AB于D,连接DQ,设点P运动的时间为t(s).(0<t<10)(1)当t=3时,求PD的长;(2)设△DPQ面积为y,求y关于t的函数关系式;(3)是否存在某一时刻t,使S△DPQ:S△ABC=3:25?若存在,请求出t的值;如果不存在,请说明理由.4、把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项.(1)(2x﹣1)(3x+2)=x2+2;(2).5、边长为4的正方形ABCD,在BC边上取一动点E,连接AE,作EF⊥AE,交CD边于点F.(1)求证:△ABE∽△ECF;(2)若CF的长为1,求CE的长.6、如图,线段AB=2,点C是AB的黄金分割点(AC<BC),点D(不与C点,B点重合)在AB上,且AD2=BD•AB,那么=_____.7、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件商品?每件应定价多少?-参考答案-一、单选题1、A【解析】【分析】根据已知条件设x=3k,y=2k,再代入求出答案即可.【详解】解:∵,∴设x=3k,y=2k,则,故选:A.【点睛】本题主要考查了比例的性质,正确用一个未知数k表示出x,y的值是解题关键.2、D【解析】【分析】由△DAH∽△CAB,得,求出y与x关系,再确定x的取值范围即可解决问题.【详解】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAH=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴,∵AB<AC,∴x<4,∴图象是D.故选:D.【点睛】本题考查相似三角形的判定和性质、线段垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.3、B【解析】【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以-即可.【详解】解:∵以点O为位似中心,位似比为-,而A
(4,3),∴A点的对应点C的坐标为(-,-1),故选:B.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.4、D【解析】【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.5、A【解析】【分析】设该社区医院平均每月接种疫苗的增长率为x,根据该社区医院十二月接种疫苗的数量,即可得出关于x的一元二次方程,此题得解.【详解】解:设该社区医院平均每月接种疫苗的增长率为x,根据题意得:100(1+x)2=392.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、D【解析】【分析】假设2018年到2020年每年的平均增长率为x,则2019年全球航天经济总量为亿美元,2020年为亿美元,根据2020年全球航天经济总量为3850亿美元,列方程即可.【详解】解:设2018年到2020年每年的平均增长率为x,则可列方程为,故选D【点睛】本题考查了一元二次方程的应用增长率问题,根据题意列出方程是解题的关键.7、D【解析】【分析】根据一元二次方程的定义逐项分析判断即可,一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A.3x3+x=2,是一元三次方程,故该选项不符合题意,B.x2-=1,是分式方程,故该选项不符合题意,C.2x2+3xy-5=0,是二元二次方程,故该选项不符合题意,D.x2+x+2=0,是一元二次方程,故该选项不符合题意,故选D【点睛】本题考查了一元二次方程的定义,理解定义是解题的关键.8、C【解析】【分析】由ASA证明△GAM≌△GEF(ASA),得出GM=GF,AF=ME=BM=x,EF=AM=6-x,因此DF=8-x,CF=x+2,在Rt△DFC中,由勾股定理得出方程,解方程即可.【详解】解:设BM=x,由折叠的性质得:∠E=∠B=90°=∠A,在△GAM和△GEF中,,∴△GAM≌△GEF(ASA),∴GM=GF,∴AF=ME=BM=x,EF=AM=6-x,∴DF=8-x,CF=8-(6-x)=x+2,在Rt△DFC中,由勾股定理得:(x+2)2=(8-x)2+62,解得:x=,∴BM=.故选:C.【点睛】本题考查了矩形的性质,折叠有性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和全等三角形的判定与性质,由勾股定理得出方程是解决问题的关键.二、填空题1、2【解析】【分析】直接利用已知假设,则,,进而代入化简得出答案.【详解】解:(,,均不为),设,则,,则.故答案为:.【点睛】本题主要考查了比例的性质,正确用同一未知数表示出各数是解题关键.2、7【解析】【分析】根据求一个数的算术平方根,立方根,倒数的定义,分母有理化分别计算即可【详解】解:49的算术平方根是7,-64的立方根是,的倒数是故答案为:7;;【点睛】本题考查了求一个数的算术平方根,立方根,分母有理化,熟练掌握算术平方根,立方根,分母有理化是解题的关键.3、①③④【解析】【分析】①易证得△OBE≌△OCF(SAS),则可证得结论①正确;②由OE的最小值是O到BC的距离,即可求得OE的最小值1,根据三角形面积公式即可判断选项②错误;③利用勾股定理求得≤EF<2,即可求得选项③正确;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD是正方形,AC,BD相交于点O,∴OB=OC,∠OBC=∠OCD=45°,在△OBE和△OCF中,,∴△OBE≌△OCF(SAS),∴OE=OF,∵∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△OEF是等腰直角三角形;故①正确;②∵当OE⊥BC时,OE最小,此时OE=OF=BC=1,∴△OEF面积的最小值是×1×1=,故②错误;③∵BE=CF,∴CE+CF=CE+BE=BC=2,假设存在一个△ECF,使得△ECF的周长是2+,则EF=,由①得△OEF是等腰直角三角形,∴OE=.∵OB=,OE的最小值是1,∴存在一个△ECF,使得△ECF的周长是2+.故③正确;④由①知:△OBE≌△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD=×2×2=1,故④正确;故答案为:①③④.【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.4、菱形【解析】【分析】由已知条件得出GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,由三角形中位线定理得出GF∥EH,GF=EH,得出四边形EGFH是平行四边形,再证出GE=EH,即可得出四边形EHFG是菱形.【详解】∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,∴GF∥AD,GF=AD,GE=BC,EH∥AD,EH=AD,∴GF∥EH,GF=EH,∴四边形EGFH是平行四边形,又∵AD=BC,∴GE=EH,∴四边形EGFH是菱形.故答案是:菱形【点睛】本题考查了三角形中位线定理、平行四边形的判定、菱形的判定方法;解题的关键是熟练掌握菱形的判定方法,由三角形中位线定理得出线段之间的关系.5、##112度【解析】【分析】利用翻折的性质,得,然后根据两直线平行,内错角相等,求得,,最后由等量代换求得的度数.【详解】解:根据翻折的性质,得:,,,,,.故答案为:.【点睛】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.6、1【解析】【分析】连接AM,延长AM交CD于G,连接FG,由正方形ABCD推出AB=CD=BC=2,AB∥CD,∠C=90°,证得△AEM≌GDM,得到AM=MG,AE=DG=AB,根据三角形中位线定理得到MN=FG,由勾股定理求出FG即可得到MN.【详解】解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC=2,AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,,∴△AEM≌△GDM(AAS),∴AM=MG,AE=DG=AB=CD,∴CG=CD=,∵点N为AF的中点,∴MN=FG,∵F为BC的中点,∴CF=BC=,∴FG==2,∴MN=1,故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的中位线定理,正确作出辅助线且证出AM=MG是解决问题的关键.7、##【解析】【分析】利用设法进行计算即可解答.【详解】解:,,设,,,,,故答案为:.【点睛】本题考查了比例的性质,解题的关键是熟练掌握设法进行求解.三、解答题1、(1)x1=3,x2=-7;(2),4;(3)-4【解析】【分析】(1)利用因式分解法求解即可.(2)先根据分式的混合运算顺序和运算法则化简原式为,再由m是方程x2-2x=4的一个根知m2-2m=4,即m2=2m+4,代入进一步化简即可.(3)先利用一元二次方程根与系数的关系把|x1x2|-x1-x2=0转化成关于k的方程,再利用一元二次方程根与系数的关系求出k所满足的范围即可得到结论.【详解】解:(1)∵x2+4x-21=0,∴(x-3)(x+7)=0,则x-3=0或x+7=0,解得x1=3,x2=-7.(2)原式=====,∵m是方程x2-2x=4的一个根,∴m2-2m=4,即m2=2m+4,则原式=.(3)∵关于x的一元二次方程x2-2x+k+2=0有两个实数根,∴Δ=4-4(k+2)≥0.解得k≤-1.由一元二次方程根与系数的关系可得:x1+x2=2,x1x2=k+2,∵|x1x2|-x1-x2=0,∴|k+2|-2=0,解得k=0或-4,∵k≤-1,∴k=-4.【点睛】本题主要考查解一元二次方程的能力,分式的化简求值和一元二次方程根与系数的关系,根的判别式,熟练掌握一元二次方程的相关知识是解题的必要条件.2、(1)10%(2)2021年1月订单额达不到140万元【解析】【分析】(1)设该企业2020年10月到12月口罩出口订单额的月平均增长率为x,根据2020年10月及12月该企业口罩出口订单额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据该企业2021年1月口罩出口订单额=该企业2020年12月口罩出口订单额×(1+增长率),即可求出结论.(1)设月平均增长率为,则,解得:,(舍去),答:月平均增长率是10%.(2)(万元)∵,∴2021年1月订单额达不到140万元.答:2021年1月订单额达不到140万元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3、(1)(2)(3)或【解析】【分析】(1)根据题意先求得,根据可得,列出比例式代入数轴求解即可;(2)过点作于,证明,得出比例式,求得,根据含30度角的直角三角形的性质气得,求得,根据三角形的面积公式进行计算即可;(3)如图,作于,根据含30度角的直角三角形的性质,求得,继而求得,由已知条件得出方程,解方程求解即可.(1)当时,,,即解得(2)过点作于,如图,为的中点,,,,,,,,,,,,的面积,即,(3)存在,使S△DPQ:S△ABC=3:25,或,理由如下,如图,作于则,,,的面积,S△DPQ:S△ABC=3:25,S△DPQ,,解得或.【点睛】本题考查了相似三角形的性质与判定,含30度角的直角三角形的性质,证明相似三角形是解题的关键.4、(1)5x2+x﹣4=0,二次项系数为5;一次项系数为1;常数项为﹣4(2)2x2+6x+1=0,二次项系数为2;一次项系数为6;常数项为1【解析】【分析】根据多项式的乘法化简,再化为一元二次方程的一般形式,进而求得二次项系数、一次项系数以及常数项.(1)化简后为5x2+x﹣4=0,因此二次项系数为5;一次项系数为1;常数项为﹣4;(2)化简后为2x2+6x+1=0,二次项系数为2;一次项系数为6;常数项为1.【点睛】本题考查了多项式的乘法,一元二次方程的一般形式,理解一元二次方程的一般形式是解题的关键.一元二次方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年黔南民族幼儿师范高等专科学校单招职业适应性测试必刷测试卷及答案1套
- 2026年西安电力机械制造公司机电学院单招职业适应性测试必刷测试卷必考题
- 2026年义乌工商职业技术学院单招职业技能考试题库新版
- 2026年江西交通职业技术学院单招职业倾向性测试题库及答案1套
- 2026年四川财经职业学院单招职业技能考试题库附答案
- 2026年湖南财经工业职业技术学院单招职业倾向性考试必刷测试卷附答案
- 麻醉术后护理方案
- 2025灵活价格调整合同模板
- 2026年新疆克孜勒苏柯尔克孜自治州单招职业倾向性考试必刷测试卷附答案
- 2026年唐山幼儿师范高等专科学校单招职业倾向性测试题库及答案1套
- 直播电商职业知识培训课件
- 仓库物料标识卡知识培训
- 药学专业个人简历模板
- 全国大学生数学建模竞赛2025年本科组赛题分析试卷
- 轮状病毒疫苗研发进展与接种应用指南
- 生物安全培训海报模板课件
- 云南省国省干线公路养护管理模式优化:基于公路局视角的深度剖析与创新路径
- 英语数字教学课件
- 贫血护理查房课件
- (人教A版)必修一高一数学上册期中模拟卷01(解析版)
- 胸痛患者转运课件
评论
0/150
提交评论