解析卷-河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试试题(详解)_第1页
解析卷-河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试试题(详解)_第2页
解析卷-河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试试题(详解)_第3页
解析卷-河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试试题(详解)_第4页
解析卷-河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试试题(详解)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省孟州市中考数学真题分类(平行线的证明)汇编章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、中,它的三条角平分线的交点为O,若∠B=80°,则∠AOC的度数为()A.100° B.130° C.110° D.150°2、下列命题正确的是

()A.三角形的外角大于它的内角B.三角形的一个外角等于它的两个内角C.三角形的一个内角小于与它不相邻的外角D.三角形的外角和是180°3、下列说法正确的是(

)A.“任意画一个三角形,其内角和为”是必然事件 B.调查全国中学生的视力情况,适合采用普查的方式C.抽样调查的样本容量越小,对总体的估计就越准确 D.十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率是4、如图,下列推理正确的是(

)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴5、如图,结合图形作出了如下判断或推理:①如图甲,如果,为垂足,那么点到的距离等于,两点间的距离;②如图乙,如果,那么;③如图丙,如果,,那么;④如图丁,如果,,那么.其中正确的有(

)A.1个 B.2个 C.3个 D.4个6、在中,若一个内角等于另外两个角的差,则(

)A.必有一个角等于 B.必有一个角等于C.必有一个角等于 D.必有一个角等于7、下列四个选项中不是命题的是(

)A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果,那么8、给出下列命题,正确的有(

)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、把“同角的余角相等”改成“如果…,那么…”:_________________________________.2、“等边三角形是锐角三角形”的逆命题是_________.3、下列命题中,其逆命题成立的是__.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.4、一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.5、“两条直线被第三条直线所截,内错角相等”是___命题.(填“真”或“假”)6、一副三角尺如图摆放,是延长线上一点,是上一点,,,,若∥,则等于_________度.7、如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.2、如图,∠ABC=31°,又∠BAC的平分线AE与∠FCB的平分线CE相交于E点,求∠AEC的度数.3、已知:如图,点A、B、C在一条直线上,AD∥BE,∠1=∠2,求证:∠A=∠E.4、如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.证明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥∴∠ADG=∠C5、如图,,.(1)试说明;(2)若,且,求的度数.6、如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,则∠B=度(直接写出答案);(2)请说明:∠EAB+∠AEB=2∠BDC的理由.7、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).-参考答案-一、单选题1、B【解析】【分析】先根据角平分线的定义可得,,再根据三角形的内角和定理可得,然后根据三角形的内角和定理可得,由此即可得出答案.【详解】如图,∵AO,CO分别是,的角平分线∴,∴又∵∴∴故选:B.【考点】本题考查了角平分线的定义、三角形的内角和定理等知识点,掌握三角形的内角和定理是解题关键.2、C【解析】【详解】【分析】根据三角形的外角性质:①三角形的外角和为360°;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于和它不相邻的任何一个内角,分别进行分析即可.【详解】A、三角形的外角大于与它不相邻的内角,故A选项错误;B、三角形的一个外角等于与它不相邻的两个内角之和,故B选项错误;C、三角形的一个内角小于和它不相邻的任何一个外角,故C选项正确;D、三角形的外角和是360°,故D选项错误,故选C.【考点】本题主要考查了三角形的外角的性质,关键是熟练掌握性质定理.3、A【解析】【分析】由三角形的内角和定理可判断A,由抽样调查与普查的含义可判断B,C,由简单随机事件的概率可判断D,从而可得答案.【详解】解:“任意画一个三角形,其内角和为”是必然事件,表述正确,故A符合题意;调查全国中学生的视力情况,适合采用抽样调查的方式,故B不符合题意;抽样调查的样本容量越小,对总体的估计就越不准确,故C不符合题意;十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率不是,与三种灯的闪烁时间相关,故D不符合题意;故选A【考点】本题考查的是必然事件的含义,调查方式的选择,简单随机事件的概率,三角形的内角和定理的含义,掌握“以上基础知识”是解本题的关键.4、B【解析】【分析】根据平行线的判定判断即可.【详解】解:A、由∠2=∠4不能推出AD∥BC,故本选项错误;B、∵∠1=∠3,∴AD∥BC,故本选项正确;C、由∠4+∠D=180°不能推出AD∥BC,故本选项错误;D、由∠4+∠B=180°不能推出AD∥BC,故本选项错误;故选:B.【考点】本题考查了平行线的判定的应用,注意:同旁内角互补,两直线平行,内错角相等,两直线平行.5、B【解析】【分析】根据点到直线的距离及两点间的距离的定义可判断①;根据平行线的性质及三角形的外角的性质可判断②;根据平行线的判定可判断③;根据平行线的判定与性质可判断④.【详解】解:①由于直线外一点到直线的垂线段的长度,叫做这点到这条直线的距离,故正确;②设AB与DE相交于点O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故错误;③∵∠ACD=∠CAB,∴AB∥CD,,故错误;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正确.故选:B.【考点】本题主要考查了点到直线的距离的定义,平行线的判定与性质,三角形的外角的性质,正确理解相关概念和性质是解本题的关键.6、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.7、B【解析】【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A、对顶角相等,故选项是命题;B、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C、三角形任意两边之和大于第三边,故选项是命题;D、如果,那么,故选项是命题;故选:B.【考点】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.8、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B二、填空题1、如果两个角是同一个角的余角,那么这两个角相等【解析】【详解】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”故答案为:如果两个角是同一个角的余角,那么这两个角相等.【考点】本题考查了命题的特点,解题的关键是“如果”后面接题设,“那么”后面接结论.2、锐角三角形是等边三角形【解析】【分析】交换题目中的题设和结论即可.【详解】解:原命题“等边三角形是锐角三角形”的条件是“一个三角形是等边三角形”,结论是“这个三角形是锐角三角形”,互换条件和结论可得到逆命题“如果一个三角形是锐角三角形,那么这个三角形是等边三角形”.简化为“锐角三角形是等边三角形”,故答案为:锐角三角形是等边三角形.【考点】本题考查了命题与逆命题,能准确找到命题中的题设和结论是解题的关键.3、①④##④①【解析】【详解】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,正确.故答案为①④.4、120【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【详解】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【考点】此题考查了平行线的性质,解题的关键是注意掌握辅助线的作法,注意数形结合思想的应用.5、假【解析】【分析】由正确的题设得出正确的结论是真命题,由正确的题设不能得出正确结论是假命题,判定此命题的正误即可得到答案.【详解】解:∵当两条平行线被第三条直线所截,内错角相等,∴两条直线被第三条直线所截,内错角有相等或不相等两种情况∴原命题错误,是假命题,故答案为假.【考点】本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.6、15【解析】【分析】根据三角形内角和定理得出∠ACB=60°,∠DEF=45°,再根据两直线平行内错角相等得到∠CEF=∠ACB=60°,根据角的和差求解即可.【详解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案为:15.【考点】本题考查三角形内角和定理及平行线的性质,熟练掌握平行线的性质是解题的关键.7、55【解析】【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【考点】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.三、解答题1、∠DEC=58°.【解析】【分析】先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,最后用三角形的外角即可得出结论.【详解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠CBD=∠ABC-∠ABD=23°,∵CE平分∠ACB,∴∠BCE=∠ACB=35°,∴在△BCE中,∠DEC=∠CBD+∠BCE=58°.【考点】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.2、∠AEC的度数为15.5°.【解析】【分析】根据角平分线的定义可得∠EAC=∠BAC,∠ECF=∠BCF,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,然后整理即可得到∠AEC=∠ABC.【详解】解:∵AE、CE分别是∠BAC和∠BCF的平分线,∴∠EAC=∠BAC,∠ECF=∠BCF,由三角形的外角性质得,∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,∴∠AEC+∠EAC=(∠ABC+∠BAC),∴∠AEC=∠ABC,∵∠ABC=31°,∴∠AEC=×31=15.5°.【考点】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定理并求出∠AEC=∠ABC是解题的关键.3、见解析【解析】【分析】先根据平行线的性质由AD∥BE得∠A=∠EBC,再根据平行线的判定由∠1=∠2得DE∥AC,则∠E=∠EBC,所以∠A=∠E.【详解】证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考点】考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4、垂直的定义;EF;两直线平行,同位角相等;BC;两直线平行,同位角相等.【解析】【分析】根据垂直求出∠BDC=∠EFC=90°,根据平行线的判定得出BD∥EF,根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出DG∥BC即可.【详解】证明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定义∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥BC,∴∠ADG=∠C.两直线平行,同位角相等【考点】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.5、(1)见解析(2)35°【解析】【分析】(1)根据,可得BM∥CN,从而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求证;(2)根据对顶角相等可得∠ABD=110°,再由三角形的内角和定理可得∠BAD=35°,然后根据AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考点】本题主要考查了平行线的性质和判定,对顶角的性质,三角形的内角和定理,熟练掌握平行线的性质和判定,对顶角的性质,三角形的内角和定理是解题的关键.6、(1)70(2)见解析【解析】【分析】(1)利用三角形的外角性质可求出∠BDC的度数,结合∠BCD=∠BDC可得出∠BCD的度数,再在△BCD中,利用三角形内角和定理可求出∠B的度数;(2)在△ABE中,利用三角形内角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形内角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,进而可得出∠EAB+∠AEB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论