基础强化福建惠安惠南中学7年级数学下册第四章三角形章节测试试卷(含答案详解)_第1页
基础强化福建惠安惠南中学7年级数学下册第四章三角形章节测试试卷(含答案详解)_第2页
基础强化福建惠安惠南中学7年级数学下册第四章三角形章节测试试卷(含答案详解)_第3页
基础强化福建惠安惠南中学7年级数学下册第四章三角形章节测试试卷(含答案详解)_第4页
基础强化福建惠安惠南中学7年级数学下册第四章三角形章节测试试卷(含答案详解)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建惠安惠南中学7年级数学下册第四章三角形章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.62、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.63、一把直尺与一块三角板如图放置,若,则()A.120° B.130° C.140° D.150°4、如图,已知AB=AD,CB=CD,可得△ABC≌△ADC,则判断的依据是()A.SSS B.SAS C.ASA D.HL5、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm6、下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E7、以下列各组长度的线段为边,能构成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm8、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,129、如图,和全等,且,对应.若,,,则的长为()A.4 B.5 C.6 D.无法确定10、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30° B.40° C.50° D.60°第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.2、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.3、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l于点C,BD⊥l于点D,若AC=5,BD=3,则CD=_______.4、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.5、如图,,则的长为________.6、如图,∠ABD=80°,∠C=38°,则∠D=___度.7、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.8、如图,已知AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m.若P,Q两点同时出发,运动_____分钟后,△CAP与△PQB全等.9、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.10、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是____________.三、解答题(6小题,每小题10分,共计60分)1、如图,点C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求证:AC=DF2、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.3、如图,已知△ABC,按如下步骤作图:①以点A为圆心,AB长为半径画弧.②以点C为圆心,CB长为半径画弧,两弧相交于点D.③连结BD,与AC交于点E,连结AD,CD.求证:∠BAC=∠DAC.4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)当直线MN绕点C旋转到图①的位置时,易证△ADC≌△CEB(不需要证明),进而得到DE、AD、BE之间的数量关系为.(探究)(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN绕点C旋转到图③的位置时,直接写出DE、AD、BE之间的数量关系.5、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.6、如图,于于F,若,(1)求证:平分;(2)已知,求的长.-参考答案-一、单选题1、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.2、C【分析】证明△AOB≌△COD推出OB=OD,OA=OC,即可解决问题.【详解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.3、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.4、A【分析】由利用边边边公理证明即可.【详解】解:故选A【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.5、C【分析】设三角形第三边的长为xcm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6、A【分析】根据全等三角形的判定方法,对各选项分别判断即可得解.【详解】解:A、∠A=∠D,∠B=∠E,AC=DF,根据AAS可以判定,故此选项符合题意;B、∠A=∠E,AB=EF,∠B=∠D,AB与EF不是对应边,不能判定,故此选项不符合题意;C、∠A=∠D,∠B=∠E,∠C=∠F,没有边对应相等,不可以判定,故此选项不符合题意;D、AB=DE,BC=EF,∠A=∠E,有两边对应相等,一对角不是对应角,不可以判定,故此选项不符合题意;故选A.【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.8、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵,∴不能构成三角形;B、∵,∴不能构成三角形;C、∵,∴能构成三角形;D、∵,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.9、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵和全等,,对应∴∴AB=DF=4故选:A.【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.10、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.二、填空题1、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴;当△ACB≌△PAQ,∴,故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.2、15【分析】根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.【详解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可证△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案为:15.【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.3、2【分析】首先根据同角的余角相等得到∠A=∠BOD,然后利用AAS证明△ACO≌△ODB,根据全等三角形对应边相等得出AC=OD=5,OC=BD=3,根据线段之间的数量关系即可求出CD的长度.【详解】解:∵AC⊥l于点C,BD⊥l于点D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案为:2.【点睛】此题考查了全等三角形的性质和判定,同角的余角相等,解题的关键是根据题意证明△ACO≌△ODB.4、2<AC<10【分析】由BF=CE得到BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.5、3【分析】根据,可得到,再由,可得,从而得到,即可求解.【详解】解:∵,∴,∵,∴,即,∴,∴.故答案为:3【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.6、【分析】由三角形的外角的性质可得代入数据即可得到答案.【详解】解:故答案为:【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.7、5【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.8、4【分析】根据题意CA⊥AB,DB⊥AB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CA⊥AB,DB⊥AB,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m,设运动时间为,且AC=4m,,当时则,即,解得当时,则,即,解得且不符合题意,故舍去综上所述即分钟后,△CAP与△PQB全等.故答案为:【点睛】本题考查了三角形全等的性质,根据全等的性质列出方程是解题的关键.9、16cm或14cm【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.10、∠1=∠2(或填AD=CB)【分析】根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:∵在△ABD与△CDB中,AB=CD,BD=DB,∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,故答案为∠1=∠2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题1、见解析【分析】由BF=EC可得BC=EF,由可得,再结合∠A=∠D可证△≌△,最后根据全等三角形的性质即可证明结论.【详解】证明:∵已知,即,等式性质∵,两直线平行,内错角相等在△和△中,∴△≌△全等三角形对应边相等.【点睛】本题考查了平行线的性质、全等三角形的判定和性质等知识点.灵活运用全等三角形的判定定理成为解答本题的关键.2、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.3、见解析【分析】由作图知:,结合公共边从而可得结论.【详解】证明:由作图知:在与中,..【点睛】本题考查的是作一条线段等于已知线段,全等三角形的判定与性质,掌握“利用证明两个三角形全等”是解本题的关键.4、(1)DE=AD+BE;(2)见解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)与(1)(2)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【详解】解:(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论