版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列说法错误的是()A.必然事件发生的概率是1 B.不可能事件发生的概率为0C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为()A.3 B.1 C. D.3、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()A.1 B. C. D.4、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.5、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()A. B. C. D.6、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.7、的边经过圆心,与圆相切于点,若,则的大小等于()A. B. C. D.8、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()A.1 B.2 C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.2、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.3、如图,、分别与相切于A、B两点,若,则的度数为________.4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.5、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.6、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.7、过年时包了100个饺子,其中有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是_____.三、解答题(7小题,每小题0分,共计0分)1、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),,.(1)①在点A,B,C中,线段ON的“二分点”是______;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.2、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.3、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.4、如图1,在中,,,点D为AB边上一点.(1)若,则______;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.5、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)王老师被分配到“就餐监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.6、在平面直角坐标系中,⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A´B´(A´,B´分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段是⊙O的关于直线l对称的“关联线段”.(1)如图2,的横、纵坐标都是整数.①在线段中,⊙O的关于直线y=x+2对称的“关联线段”是_______;②若线段中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则=;(2)已知直线交x轴于点C,在△ABC中,AC=3,AB=1,若线段AB是⊙O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.7、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形.(不写画法,保留作图痕迹).-参考答案-一、单选题1、D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A.必然事件发生的概率是1,故该选项正确,不符合题意;B.不可能事件发生的概率是0,故该选项正确,不符合题意;C.随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D.概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.2、D【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.3、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.4、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.5、B【分析】几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解【详解】解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,所以这个几何体从正面看到的平面图形为故选:B【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.6、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.7、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接,,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8、D【分析】作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,∵⊙O与AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四边形ODCE为正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.二、填空题1、【分析】阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.【详解】连接AD,如图所示则AD⊥BC∵D点是BC的中点∴由勾股定理得∴∵S半圆=∴S阴影=S△ABC−S半圆故答案为:【点睛】本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.2、2【分析】取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.【详解】解:如图所示,取AC中点O,∵,即,∴∠ADC=90°,∴点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,∵,,∠ACB=90°,∴,∴,∴,∴,故答案为:2.【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.3、【分析】根据已知条件可得出,,再利用圆周角定理得出即可.【详解】解:、分别与相切于、两点,,,,,.故答案为:.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.4、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.5、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:.【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.6、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵的周长为,∴的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.7、【分析】直接利用概率公式进行计算即可.【详解】解:过年时包了100个饺子,有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是故答案为:【点睛】本题考查的是简单随机事件的概率,熟练的利用概率公式进行计算是解本题的关键;概率的含义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1、(1)①B和C;②或;(2)或【分析】(1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.【详解】(1)①∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为,最大值为,∴点B是线段ON的“二分点”,点C到ON的最小值为1,最大值为,∴点C是线段ON的“二分点”,故答案为:B和C;②若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:;若,如图所示:点C到OD的最小值为1,最大值为,满足题意;若时,如图所示:点C到OD的最小值为1,最大值为,∵点C为线段OD的“二分点”,∴,解得:(舍);若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:或(舍),综上所得:a的取值范围为或;(2)如图所示,设线段AN上存在的“二分点”为,当时,最小值为:,最大值为:,∴,即,∵,∴∴;当,时,最小值为:,最大值为:,∴∴,即,∵,∴,∵,∴不存在;当,时,最小值为:,最大值为:,∴,即,∴,∵,∴不存在;当时,最小值为:,最大值为:,∴,即,∴,∵,∴,综上所述,r的取值范围为或.【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.2、见解析【分析】根据几何体的三视图画法作图.【详解】解:如图,.【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键.3、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:∵BD是圆周角ABC的角平分线,∴∠ABD=∠CBD,∴,∴AD=CD.【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.4、(1)5(2)证明见解析(3)【分析】(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.(1)过C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)连接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中点N,连接FN、BN,∵,,∴∵AF垂直CD∴∵AC中点N,∴∴∵三角形BFN中∴∴当B、F、N三点共线时BF最小,最小值为.【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.5、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”:“洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,∴王老师被分配到“就餐监督岗”的概率=;故答案为:;(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,∴李老师和王老师被分配到同一个监督岗的概率==.【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、(1)①A1B1;②2或3;(2)b的最大值为,此时BC=;b的最小值为,此时BC=【分析】(1)①根据题意作出图象即可解答;②根据“关联线段”的定义,可确定线段A2B2存在“关联线段”,再分情况解答即可;(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;然后分别画出图形求解即可;【详解】解:(1)①作出各点关于直线y=x+2的对称点,如图所示,只有A1B1符合题意;故答案为:A1B1;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中药糖浆剂工操作规范能力考核试卷含答案
- 喷涂预处理工安全规程测试考核试卷含答案
- 有色金属矿干燥工岗前安全强化考核试卷含答案
- 铁棚维修施工安全协议书
- 函数的概念及其表示-2026年高考数学一轮总复习课时检测训练(人教A版)含解析
- 金融创新与双十一盛宴
- 沪粤版八年级物理上册《长度和时间的测量》同步练习题及答案
- 揭秘线性函数
- 教育改革与创新实践
- 硕士求职全攻略
- 述职报告5分钟演讲
- 临床成人患者医用粘胶相关性皮肤损伤预防及护理
- 供应室穿刺针清洗流程大纲
- 代开票走账合同(标准版)
- 产科新技术球囊放置临床应用汇报
- 冬天双壁波纹管施工方案
- 固废处置居间合同范本
- 中国铁路北京局集团有限公司就业协议书5篇
- DB37-T 5056-2025 民用建筑电线电缆防火设计标准
- 2025水果供货合同范本
- cnas文件管理培训
评论
0/150
提交评论