




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省玉门市中考数学真题分类(数据分析)汇编章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分2、某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩(分)909195969799人数(人)232431则这组数据的中位数和众数分别为(
)A.95,95 B.95,96 C.96,96 D.96,973、某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是(
)A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变4、开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温()36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(
)A., B., C., D.,5、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x6、下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁7、测试五位学生的“一分钟仰卧起坐”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最高成绩50个写成了55个.则下列统计量不受影响的是(
)A.方差 B.标准差 C.中位数 D.平均数8、某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为,所占比例如下表:项目学习卫生纪律活动参与所占比例八年级班这四项得分依次为,,,,则该班四项综合得分(满分)为(
)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、某校女子排球队队员的年龄分布如下表:年龄131415人数474则该校女子排球队队员的平均年龄是岁.2、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.3、数据9.30,9.05,9.10,9.40,9.20,9.10的众数是_______;中位数是______4、一组数据5,4,2,4,5的方差是________.5、一组数据:12,13,15,14,16,18,19,14,则这组数据的极差是_____6、超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708092将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是_____分.7、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)三、解答题(7小题,每小题10分,共计70分)1、某车间有工人15人,某月他们生产的零件个数统计如下表:生产零件的个数(个)60048022018012090工人人数(人)113334(1)求这15名工人该月生产零件的平均个数;(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?2、甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.答辩、笔试成绩统计表人员甲乙丙答辩成绩(分)958886笔试成绩(分)808690根据以上信息,请解答下列问题.(1)参加投票的共有________人,乙的得票率是________.(2)补全条形统计图.(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.3、某社区计划在4月份开展厨余垃圾减量化宣传活动.社区环保志愿者首先对该社区辖内住户数相同的东、西两个小区3月份的厨余垃圾量进行了调查统计,调查结果如表所示:小区日均厨余垃圾量(kg)东小区100西小区120为了促进厨余垃圾减量化,志愿者对东、西两个小区分别通过线上微信宣传和线下入户宣传两种不同的方式进行宣传,且每5天宣传一次.宣传过程中,志愿者对这两个小区4月份每间隔5天的厨余垃圾量进行调查统计,结果如表所示:小区1~5日日均厨余垃圾量(kg)6~10日日均厨余垃圾量(kg)11~15日日均厨余垃圾量(kg)16~20日日均厨余垃圾量(kg)21~25日日均厨余垃圾量(kg)26~30日日均厨余垃圾量(kg)东小区808692868690西小区989188888174(1)求东小区4月1日至30日的厨余垃圾量的平均数;(2)志愿者所采取的两种厨余垃圾减量化的宣传方式,你认为哪种效果更好?请根据上述数据说明理由.4、某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.5、为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息..甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:):.甲城市邮政企业4月份收入的数据在这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为.比较的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).6、为增进家长和孩子之间的交流,我校开展了为期一周的以“亲子锻炼,共同成长”为主题的亲子活动.现从全校七、八年级中各抽取20名学生的亲子锻炼次数(记为x次)进行分析,将锻炼次数分为以下4组,A组:;B组:;C组:;D组:;现将数据收集、整理、分析如下.收集数据:七年级:5,2,0,7,1,10,3,4,7,7,6,8,4,5,6,8,9,8,8,11八年级20名学生中的次数分别是:8,7,9,9,8,9,9,8整理数据:容量等级七年级a6b2八年级4583分析数据:平均数众数中位数七年级5.95c6八年级5.959d根据以上信息,解答下列问题:(1)补全条形统计图;上述表中的______,______,______,_______;(2)通过以上数据分析,你认为________(填“七年级”或者“八年级”)学生亲子锻炼的情况更好,请说明理由.(一条理由即可)(3)若一周内亲子锻炼在7小时及以上为优秀,我校七年级有2000名学生,八年级有2500名学生,估计我校七年级和八年级亲子锻炼优秀的学生总人数是多少?7、如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.-参考答案-一、单选题1、D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:(分)故选D【考点】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.2、C【解析】【分析】根据中位数、众数的意义分别求出中位数、众数即可.【详解】解:将这15名学生成绩从小到大排列,处在中间位置的一个数,即第8个数是96,因此中位数是96,这15名学生成绩出现次数最多的是96,共出现4次,因此众数是96,故选:C.【考点】本题考查中位数、众数,理解中位数、众数的意义是解决问题的前提,掌握众数、中位数的计算方法是解决问题的关键.3、B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【考点】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4、B【解析】【分析】应用众数和中位数的定义进行就算即可得出答案.【详解】解:由统计表可知,36.5℃出现了4次,次数最多,故众数为36.5,中位数为=36.5(℃).故选:B.【考点】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键.5、A【解析】【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.【考点】此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.6、D【解析】【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从乙和丁中选择一人参加比赛,∵,∴选择丁参赛,故选D.【考点】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.7、C【解析】【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,50个写成了55个,计算结果不受影响的是中位数,故选:C.【考点】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.8、B【解析】【分析】根据加权平均数的定义计算可得.【详解】解:80×40%+90×25%+84×25%+70×10%=82.5(分)故选:B【考点】本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.二、填空题1、14.【解析】【详解】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,该校女子排球队队员的平均年龄是(岁).故答案为:14.2、【解析】【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5∴∴∴这组数据的方差是:故答案为:.【考点】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.3、
9.10
9.15【解析】【详解】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:出现次数最多的是9.10,则众数是9.10;将这些数按大小顺序排列,中间两个数为9.10,9.20,则中位数为9.15;故答案为9.10,9.15.4、1.2##65【解析】【分析】首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:平均数,数据的方差,故答案为:1.2.【考点】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法.5、7【解析】【详解】该题考查极差概念一组数据中的最大数据与最小数据的差叫做这组数据的极差那么12,13,15,14,16,18,19,14,这组数中最大数是19,最小数是12这组数的极差是19-12=76、77.4.【解析】【详解】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×+80×+92×=77.4分.考点:加权平均数.7、甲【解析】【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:=(7+6+9+6+7)÷5=7(环),=(5+9+6+7+8)÷5=7(环),=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【考点】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.三、解答题1、(1)200个;(2)应以中位数为生产目标,为180个.【解析】【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数情况,从而得出结论.【详解】解:(1)根据题意得:×(600+480+220×3+180×3+120×3+90×4)=200(个),答:这一天15名工人生产零件的平均个数为200个;(2)∵共有15名工人,∴中位数为180个,众数为90个,若以平均数为生产目标,则达标的有5个,不够一半;若以中位数为生产目标,则达标的有8个,在一半左右;若以众数为生产目标,则众数为90,则达标的有15个,所有的人都达标;综上,应以中位数为生产目标,为180个.【考点】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.2、(1)600;36%;(2)见解析;(3)乙当选【解析】【分析】(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;(2)求出丙的人数,补全图(2)的条形统计图;(3)由题意可分别求得三人的得分,比较得出结论.【详解】解:(1)参加投票的人数,乙的得票率.故答案为:600;36%;(2)丙的得票数,补全的条形统计图见下图所示:(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:(分);(分);(分).因为,所以乙当选.【考点】本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键.3、(1)东小区4月1日至30日的厨余垃圾量的平均数为kg;(2)采取“线下入户宣传”效果好,理由见解析.【解析】【分析】(1)根据平均数的意义和计算方法进行计算即可;(2)通过比较3月份、4月份东、西小区日均厨余垃圾量得出结论.【详解】解:(1)东小区4月1日至30日厨余垃圾量的平均数为(kg);答:东小区4月1日至30日的厨余垃圾量的平均数为kg;(2)西小区4月1日至30日厨余垃圾量的平均数为(kg);∴两个小区4月份的日均厨余垃圾量相等;由表格可知,东小区4月份日均厨余垃圾量相对于3月份的降幅,西小区4月份日均厨余垃圾量相对于3月份的降幅,经比较,,即西小区的降幅更大,所以西小区宣传效果较好,即采取“线下入户宣传”效果好.【考点】本题考查算数平均数以及根据平均数做决策,掌握计算算数平均数的方法是解题关键.4、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】【分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【考点】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.5、(1);(2),理由见详解;(3)乙城市的邮政企业4月份的总收入为2200百万元.【解析】【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵有3家,有7家,有8家,∴中位数落在上,∴;(2)由(1)可得:甲城市中位数低于平均数,则最大为12个;乙城市中位数高于平均数,则至少为13个,∴;(3)由题意得:(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【考点】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题的关键.6、(1)画图见解析,(2)八年级,理由见解析;(3)人.【解析】【分析】(1)由频数分布表可得:组有人,再画图即可,再整理七年级的数据可得的值,再根据八年级的数据的条形统计图判断中位数落在组,再排列组数据,求解第个数据的平均数即可得到答案;(2)比较两个年级数据的中位数即可得到答案;(3)分别计算七年级与八年级亲子锻炼在7小时及以上的占比,再利用样本百分比乘以各自的总人数,再求和即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特殊住院患者管理办法
- 特殊项目采购管理办法
- 特种车辆销售管理办法
- 独立学院设置管理办法
- 猪肉生鲜超市管理办法
- 环保竣工验收管理办法
- 环境职业健康管理办法
- 现场产品防护管理办法
- 远大理想与责任使命课件
- 理赔分部如何管理办法
- 中国黄金集团招聘面试经典题及答案
- GB/T 4026-2025人机界面标志标识的基本和安全规则设备端子、导体终端和导体的标识
- 青岛版科学一年级上册(新教材)1.1 吹泡泡(教学课件)(内嵌视频)
- 感染性心内膜炎术后护理查房
- 推理能力题目及答案
- 2025年部编版新教材语文七年级上册教学计划(含进度表)
- 医院科研奖励管理办法
- 上汽大众产品与业务培训
- 物流运输服务承诺与质量保证措施
- 车间级职代会培训课件
- 质量信息反馈管理制度
评论
0/150
提交评论