版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是()A.2.5 B.6 C.6.5 D.132、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B. C.6 D.83、如图所示,AB=CD,AD=BC,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对4、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为().A.4 B.10 C.6 D.85、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75° B.60° C.55° D.40°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在正方形ABCD中,,E是AB的中点,P是AD上任意一点,连接PE,PC,若是等腰三角形,则AP的长可能是______.2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.3、如图所示,正方形ABCD的面积为6,△CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为_____________.4、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离.若量得DE=15m,则A、B之间的距离为__________m5、如图,在□中,⊥于点,⊥于点.若,,且的周长为40,则的面积为________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.2、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接.(1)当点在线段上时,如图①,求证:;(2)当点在直线上移动时,位置如图②、图③所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明.3、如图,ABCD的对角线AC、BD相交于点O,BD12cm,AC6cm,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm/s的速度向点D运动.
(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.4、如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.试画出一个顶点都在格点上,且面积为10的正方形.5、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式.(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.-参考答案-一、单选题1、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边,所以,斜边上的中线长.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质.2、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【详解】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.3、D【解析】【分析】根据平行四边形的判定与性质,求解即可.【详解】解:∵AB=CD,AD=BC∴四边形为平行四边形∴,,,∴、又∵,∴、∴图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质.4、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5、C【解析】【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=55°,故选:C.【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.二、填空题1、或或【解析】【分析】分三种情况:当时,当时,当时,利用等腰三角形的性质和正方形的性质进行求解即可.【详解】解:如图1,当时,∵四边形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴则,∵E是AB的中点,∴∴;如图2.当点P与点D重合时,∵四边形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中点,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如图3.当时,设,则,在直角△PDC中,,在直角△AEP中,,则.解得,即.综上所述,AP的长可能是1或2或.故答案为:1或2或.【点睛】本题主要考查了等腰三角形的性质,正方形的性质,全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握等腰三角形的性质和正方形的性质.2、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.3、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CK=AK,推出EK+AK≥CE,根据等边三角形性质推出CE=CD,根据正方形面积公式求出CD即可.【详解】解:∵四边形ABCD是正方形,∴C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CK=AK,∴EK+CK≥CE,∵△CDE是等边三角形,∴CE=CD,∵正方形ABCD的面积为6,∴CD=,∴KA+KE的最小值为,故答案为:.【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE.4、30【解析】【分析】根据三角形中位线的性质解答即可.【详解】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=30m.故填30.【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.5、48【解析】【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得.【详解】解:∵▱ABCD的周长:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴▱ABCD的面积:,故答案为:48.【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟练运用平行四边形的性质及其面积公式是解题关键.三、解答题1、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值.【详解】(1)∵四边形是矩形,∴,∵,∴,∴,∴,在与中,,∴,∴;(2)∵,∴,∵,∴,∴.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.2、(1)见解析;(2)图②中,图③中【分析】(1)在上截取,连接,可先证得,则,,进而可证得△AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系.【详解】解:(1)证明:如图,在上截取,连接.∵四边形是正方形,,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;
(2)图②:,理由如下:如下图,在延长线上截取,连接.
∵四边形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;图③:如图,在DE上截取DF=BE,连接.
∵四边形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.3、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
(2)若是菱形,则AC垂直于BD,即有,故AB可求;
(3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则,,;∴当AB为时,平行四边形是菱形;(3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,∴EO=6−t=4,∴EF=8,∴菱形AECF的面积=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.4、见解析【分析】根据正方形的面积为10,可得其边长为,据此可得正方形DEFG.【详解】解:由勾股定理可得:如图所示,四边形DEFG即为所求.
【点睛】本题主要考查了应用与设计作图以及勾股定理的运用,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.5、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或
或时,为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形中,,,由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论