版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、数学世界中充满了许多美妙的几何图形,等待着你去发现,如图是张老师用几何画板画出的四个图形,其中既是轴对称图形又是中心对称图形的是(
)A.①勾股树 B.②分形树C.③谢尔宾斯三角形 D.④雪花2、若关于的不等式组有解,且使关于的分式方程的解为非负数.则满足条件的所有整数的和为(
)A.-9 B.-8 C.-5 D.-43、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是(
)A. B.C. D.4、如图,在矩形纸片中,,,点是边上的一点,将沿所在的直线折叠,使点落在上的点处,则的长是(
)A.2 B.3 C.4 D.55、点N(3,﹣2)先向左平移3个单位,又向上平移2个单位得到点M,则点M的坐标为(
)A.(0,0) B.(0,﹣4) C.(6,﹣4) D.(6,0)6、如图是一个放置在水平桌面上的锥形瓶,向锥形瓶中匀速注水,则水面高度与注水时间之间的函数关系图象大致是(
)A. B.C. D.7、若关于x的不等式组无解,且关于y的分式方程有正整数解,则所有符合条件的整数a之和为(
)A.-5 B.-8 C.-6 D.-48、已知是二元一次方程组mx−ny=8nx+my=1的解,则的立方根为(
)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,正方形的边长为3,E是上一点,,连接与相交于点F,过点F作,交于点G,连接,则点E到的距离为_____.2、如图①,在△ABC中,∠ACB=90°,∠A=30°,点C沿BE折叠与AB上的点D重合,连接DE,请你探究:______;请在这一结论的基础上继续思考:如图②,在△OPM中,∠OPM=90°∠M=30°,若OM=2,点G是OM边上的动点,则的最小值为______.3、如图,直线AB的解析式为y=﹣x+b分别与x,y轴交于A,B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且,在x轴上方存在点D,使以点A,B,D为顶点的三角形与△ABC全等,则点D的坐标为_____.4、如图,点A、B在x轴上,点C在y轴的正半轴上,且AC=BC=,OC=1,P为线段AB上一点,则PC2+PA⋅PB的值为_____.5、如图,点的坐标为,点的坐标为,将绕点第一次顺时针旋转得到△,将△绕点第二次顺时针旋转得到△,将△绕点第三次顺时针旋转得到△,,如此进行下去,则点的坐标为__.6、如图,直线与直线交于点,由图象可知,不等式的解为______.7、如果代数式意义,那么x的取值范围是_______.三、解答题(7小题,每小题10分,共计70分)1、对于平面直角坐标系xOy中的图形W和点P(点P在图形W上),给出如下定义:若点,……,都在图形W上,且,那么称点,,……,是图形W关于点P的“等距点”,线段,,……,是图形W关于点P的“等距线段”.(1)如图1,已知点B(-2,0),C(2,0),A(0,a)()①判断:点B,C△ABC关于点O的“等距点”,线段OA,OB△ABC关于点O的“等距线段”;(填“是”或“不是”)②△ABC关于点O的两个“等距点”,分别在边AB,AC上,当相应的“等距线段”最短时,请在图1中画出线段,;(2)如图2,已知C(4,0),A(2,2),P(3,0),若点C,D是△AOC关于点P的“等距点”,求点D的坐标;(3)如图3,已知C(a,0)在x轴的正半轴上,.点P(x,0),△AOC关于点P的“等距点”恰好有四个,且其中一个点是点O,请直接写出点P横坐标的取值范围.(用含a的式子表示)2、计算:3、如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.4、如图,已知△ABC是锐角三角形(AC<AB)(1)①请在图1中用圆规和无刻度的直尺作出点O,使O到△ABC三边距离相等;(不写作法,保留作图痕迹)②在①的条件下,若AB=15,AC=13,BC=14,则△ABC中BC边上的高=______,O到△ABC三边距离=______.(2)在△ABC中,若点P在△ABC内部(含边界)且满足PC≤PB≤PA,请在图2中用圆规和无刻度的直尺作出所有符合条件的点P组成的区域(用阴影表示).(不写作法,保留作图痕迹)5、【阅读材料】数列是一个古老的数学课题,我国对数列概念的认识很早,例如《易传•系辞》:“河出图,洛出书,圣人则之;两仪生四象,四象生八卦”.这是世界数学史上有关等比数列的最早文字记载.【问题提出】求等比数列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整数,请写出计算过程).【等比数列】按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….一般地,如果一个数列从第二项起,每一项与它前一项的比值等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q表示.如:数列1,2,4,8,…为等比数列,其中a1=1,a2=2,公比为q=2.根据以上材料,解答下列问题:(1)等比数列3,9,27,…的公比q为_____,第5项是_____.【公式推导】如果一个数列a1,a2,a3,…,an…,是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…,=q.所以a2=a1•q,a3=a2•q=a1q•q=a1•q2,a4=a3•q=a1•q2=a1•q3,…(2)由此,请你填空完成等比数列的通项公式:an=a1•(_____).【拓广探究】等比数列求和公式并不复杂,但是其推导过程——错位相减法,构思精巧、形式奇特.欧几里得在《几何原本》中就给出了等比数列前n项和公式,而错位相减法则直到1822年才由欧拉在《代数学基础》中给出,时间相差两千多年.下面是小明为了计算1+2+22+…+22019+22020的值,采用的方法:设S=1+2+22+…+22019+22020①,则2S=2+22+…+22020+22021②,②-①得2S-S=S=22021-1,∴S=1+2+22+…+22019+22020=22021-1.【解决问题】(3)请仿照小明的方法求等比数列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整数,请写出计算过程).【拓展应用】(4)计算25+252+253+…+25n的值为_____.(直接写出结果)6、求下列各式中的(1)(2)7、济南某社区为倡导健康生活,推进全民健身,去年购进A,B两种健身器材若干件.经了解,B种健身器材的单价是A种健身器材的1.5倍,用6000元购买A种健身器材比用3600元购买B种健身器材多15件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共60件,且B种健身器材的数量不少于A种健身器材的4倍,请你确定一种购买方案使得购进A,B两种健身器材的费用最少.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、①既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;B、②是轴对称图形,不是中心对称图形,故本选项不符合题意;C、③是轴对称图形,不是中心对称图形,故本选项不符合题意;D、④既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、A【解析】【分析】先求不等式组的解集,根据不等式组有解,可得,然后再解出分式方程,再根据分式方程的解为非负数,可得,即可求解.【详解】解:,解不等式①,得:,解不等式②,得:,∵不等式组有解,∴,解得:,,去分母得:,∵分式方程的解为非负数,且不等于2∴,即且,∴,且∴满足条件的所有整数有-5、-4、-3、-2、0、1、2、3,∴满足条件的所有整数的和.故选:B.【点睛】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的基本步骤是解题的关键.3、C【解析】【分析】根据矩形、平行线性质,对各个选项逐个分析,即可得到答案.【详解】选项A,两组对边分别相等∴四边形为平行四边形∴两组对边分别平行∵其中一个内角为直角∴相邻的两个内角均为直角∴四边形为矩形∵测量长为4cm、宽为3cm∴选项A符合题意选项B,三个内角均为直角∴四个角均为直角,即为矩形∵测量长为4cm、宽为3cm∴选项B符合题意;选项C,两个对角为直角无法推导得其他两个内角为直角∴四边形可能不是矩形∴选项C不符合题意;选项D,两个相邻内角相等,且均为直角∴测量长为4cm的两个边平行且相等∴四边形为矩形∵测量长为4cm、宽为3cm∴选项D符合题意故选:C.【点睛】本题考查了矩形、平行四边形、平行线的知识,解题的关键是熟练掌握矩形的判定性质,从而完成求解.4、B【解析】【分析】根据折叠的性质可得,再由矩形的性质可得,从而得到,然后设,则,在中,由勾股定理,即可求解.【详解】解:根据题意得:,在矩形纸片中,,∴,∴,设,则,在中,,∴,解得:,即.故选:B【点睛】本题主要考查了矩形与折叠,勾股定理,熟练掌握矩形的性质,折叠图形的性质是解题的关键.5、A【解析】【分析】把点N的横坐标减3,纵坐标加2即可得到点M的坐标.【详解】解:根据题意得点M的横坐标为3-3=0,纵坐标为-2+2=0,∴点M的坐标为(0,0).故选:A.【点睛】本题考查了点的平移规律;正确理解点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减是解题的关键.6、B【解析】【分析】根据注水速度与水面高度的关系和锥形瓶的形状,即可得到函数大致图像,此题得解.【详解】解:向锥形瓶中匀速注水,则水面上升的速度由慢变快,最后到了到达锥形瓶上部时,上升的速度不变,即图象开始的曲线由缓到陡,最后是一条线段,故符合题意的图象是选项B.故选:B.【点睛】熟练掌握自变量与因变量之间的关系,此题需要重点关注的是锥形瓶的形状.7、C【解析】【分析】先解出不等式组,根据不等式组无解,可得,再求出分式方程的根,然后根据分式方程有正整数解,可得a取0或-1或-2或-5,再由当时,是增根,从而得到a取-1或-5,即可求解.【详解】解:,解不等式①得:,解不等式②得:,∵不等式组无解,∴,,去分母得:,即,解得:,∵分式方程有正整数解,∴,且为正整数,∴取-1或-2或-3或-6,即a取0或-1或-2或-5,当时,,此时是增根,不合题意,舍去,∵,∴a取-1或-5,∴所有符合条件的整数a之和为.故选:C【点睛】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的方法是解题的关键.8、D【解析】【分析】将代入,得到关于,的方程组,再用代入消元法求解方程组,得到,的值,即可求得的值,再根据立方根的定义即可求解.【详解】解:是二元一次方程组的解由得,将代入,得,解得,将代入,得,,的立方根为,的立方根为,故选:D.【点睛】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法、立方根的求法是解题的关键.二、填空题1、【解析】【分析】本题首先经过分析可得,由全等三角形的性质和边角关系可得为等腰直角三角形,进而为等腰直角三角形,由勾股定理及等腰直角三角形的性质即可求解.【详解】如图,作,连接,在正方形ABCD中,,在和中,,,,,,在四边形ABGF中,,又,,,,,为等腰直角三角形,,为等腰直角三角形,,,,,故答案为:.【点睛】本题考查了正方形的性质,三角形全等,等腰直角三角形的判定,勾股定理,直角三角形中锐角三角函数,题目综合性强,理清思路,准确作出辅助线是解题的关键.2、
【解析】【分析】①根据直角三角形及折叠的性质可得,,,,由等角对等边及等腰三角形的性质可得,,利用线段间的数量关系进行等量代换即可得;②作射线MB,使得,过点G作,过点P作交于点C,连接PB,利用勾股定理可得,,由含角的直角三角形的性质可得,根据题意得出最小值即为的最小值,即当P、G、B三点共线时,PC的长度,在中,利用勾股定理求解即可得出PC的长度,即为最小值.【详解】解:①∵,∴,∵点C沿BE折叠与AB上的点D重合,∴,∴,,,∴,∴,,∴,∴,即;②如图所示:作射线MB,使得,过点G作,过点P作交于点C,连接PB,在中,,,∴,,∵,,∴,∴,即当P、G、B三点共线时,取得最小值,在中,∵,,,∴,∴,,∴的最小值为;故答案为:①;②.【点睛】题目主要考查折叠的性质及等腰三角形的判定和性质,勾股定理,含角的直角三角形的性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.3、(4,3)或(3,4)【解析】【分析】求出的坐标,分平行轴,不平行轴两种情况,求解计算即可.【详解】解:将点A的坐标代入函数表达式得:0=﹣3+b,解得:b=3∴直线AB的表达式为:y=﹣x+3,∴点B(0,3)∵OB:OC=3:1∴OC=1,∴点C(﹣1,0);①如图,当BD平行x轴时,以点为顶点的三角形与全等,则四边形为平行四边形则BD=AC=1+3=4,则点D(4,3);②当BD不平行x轴时,则S△ABD=S△ABD′,则点D、D′到AB的距离相等,∴直线DD′∥AB,设直线DD′的表达式为:y=﹣x+n,将点D的坐标代入y=﹣x+n中解得:n=7,∴直线DD′的表达式为:y=﹣x+7,设点D′(m,7﹣m),∵A,B,D′为顶点的三角形与△ABC全等,则BD′=BC=,解得:m=3,故点D′(3,4);故答案为:(4,3)或(3,4).【点睛】本题考查了一次函数图象上点的坐标特征,三角形全等,平行线的性质,勾股定理等知识.解题的关键与难点在于分情况求解.4、5【解析】【分析】由勾股定理可求AO=BO=2,设点P(x,0),由勾股定理和两点之间距离公式可求解.【详解】解:∵AC=BC=,OC=1,∴AO=BO===2,设点P(x,0),则PA=x+2,PB=2﹣x,PC2=x2+1,∴PC2+PA•PB=x2+1+(x+2)(2﹣x)=5,故答案为:5.【点睛】本题考查了勾股定理,坐标与图形性质,利用点的坐标表示线段的长是解题的关键.5、【解析】【分析】根据题意得出点坐标变化规律,进而得出点的坐标位置,进而得出答案.【详解】解:点的坐标为,点的坐标为,是直角三角形,,,将绕点第一次顺时针旋转得到△,此时为,将△绕点第二次顺时针旋转得到△,得到为,再将△绕点第三次顺时针旋转得到△,得到,,依此规律,每4次循环一周,,,,,,点,即.故答案为.【点睛】此题主要考查了坐标与图形旋转,得出点坐标变化规律是解题关键.6、【解析】【分析】观察图象知,直线的图象位于直线的图象上方或两直线相交时,函数的函数值大于或等于函数的函数值,从而可求得的解.【详解】由图象知:不等式的解为故答案为:【点睛】本题考查了两直线相交与一元一次不等式的关系,数形结合是关键.7、且【解析】【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】解:∵二次根式的被开方数是非负数,∴,解得.又∵分母不等于零,∴,∴且.故答案是:且.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,解答本题的关键是分式的分母不等于零和二次根式的被开方数是非负数.三、解答题1、(1)①是;不是;②见解析(2)D(2,0)或(3,1)(3)<x<【解析】【分析】(1)①根据题意可得,,结合题中定义即可得出结果;②根据题意及题中“等距点”可得,由相应的“等距线段”最短时,过点O分别作,,此时“等距线段”最短,据此作图即可得;(2)根据勾股定理及其逆定理可得是等腰直角三角形,,结合题意可得:,,结合图形即可得出点的坐标;(3)分两部分进行讨论:①当时,点P为线段OC的中点;②当时,;结合题中“等距点”的定义及含角直角三角形的性质依次分析即可得出点P横坐标的取值范围.(1)解:①∵点B(-2,0),C(2,0),A(0,a)(),∴,,∴点B,C是关于点O的“等距点”,线段OA,OB不是关于点O的“等距线段”;故答案为:是;不是;②∵关于点O的两个“等距点”,分别在边AB,AC上,∴,当相应的“等距线段”最短时,过点O分别作,,此时“等距线段”最短,如图所示:(2)解:如图所示,∵C(4,0),A(2,2),∴,∵,∴是等腰直角三角形,∴,∵P(3,0),∴,∴∴,∴D(2,0)或(3,1);(3)解:①当时,点P为线段OC的中点,∴,∴点O、C是关于点P的“等距点”,过点P作于点B,截取,连接PD,如图所示:则,∵,∴,∴的关于点P的“等距点”有两个在OC上,有一个在AC上,∵关于点P的“等距点”恰好有四个,且其中一个是点O,∴,即;②当时,,,则的关于点P的“等距点”有两个在OC上,有一个在AC上,∵关于点P的“等距点”恰好有四个,且其中一个是点O,,即;综上可得:,∴点P横坐标的取值范围为:.【点睛】题目主要考查坐标系中两点间的距离,直线外一点到直线的垂线段最短,勾股定理,等腰三角形的判定和性质,含角直角三角形的性质等,理解题意,作出相应辅助线是解题关键.2、【解析】【分析】先进行二次根式的化简、去绝对值、计算零指数幂、负整数指数幂,然后进行加减运算即可.【详解】解:原式.【点睛】本题考查了绝对值,二次根式的化简,零指数幂,负整数指数幂.解题的关键在于正确的计算.3、(1),;(2)菱形的面积是.【解析】【分析】(1)根据AB的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC的长度,根据矩形的对角线互相平分可得出为等腰三角形,从而利用外角的知识可得出∠AOB的度数;(2)先求出△OBC和的面积,从而可求出菱形OBEC的面积.(1)解:在矩形中,,在中,.∴.∴.又∵,∴是等边三角形.
∴.(2)解:在中,由勾股定理,得.∴.∴.∴菱形的面积是.【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.4、(1)①见解析;②12,4(2)见解析【解析】【分析】(1)①作两内角的平分线,得交点O;②作边上的高,设,则,在中,,在中,根据勾股定理建立方程,求得,进而勾股定理求得,根据等面积法求O到△ABC三边距离即可;(2)作的垂直平分线,根据满足PC≤PB≤PA,由PB≤PA,点点离点更近,在的垂直平分线靠进点部分,由PC≤PB,点点离点更近,在垂直平分线靠进点的部分,以及与围成部分,包括边界.(1)①如图所示,即为所求;②如图所示,作边上的高,AB=15,AC=13,BC=14,设,则在中,在中,即解得由①可知到三边距离相等,设到三边距离为,则即解得故答案为:(2)满足PC≤PB≤PA的点P组成的区域(用阴影表示),如图所示.【点睛】本题考查了作角平分线,垂直平分线,勾股定理,掌握角平分线的性质与垂直平分线的性质是解题的关键.5、(1)3,243;(2)qn-1;【解决问题】;【拓展应用】【解析】【分析】(1)根据等比数列的公比的定义求解即可;(2)探究规律利用规律解决问题;【解决问题】设S=1+a1+a2+a3+…+an,则aS=a1+a2+a3+…+an+1,两式相减即可求得;【拓展应用】设S=25+252+253+…+25n,则25S=252+253+…+25n+1,两式相减即可求得.【详解】解:(1)等比数列3,9,27,…的公比q为3,第四项为27×3=81,第五项为81×3=243,故答案为:3,243.(2)如果一个数列a1,a2,a3,…,an…,是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…,=q.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行社计调安全检查能力考核试卷含答案
- 公司砖瓦装出窑工合规化技术规程
- 救护仪器维修工冲突解决评优考核试卷含答案
- 合作框架协议书
- 函数与方程(解析版)-高中数学必修第一册题型考点突破
- 光的反射-2024人教版八年级物理上册同步练习(含答案解析及考点)
- 黑龙江省哈尔滨市某中学2024-2025学年高一年级下册期末考试数学试卷(含答案解析)
- 《鸿蒙智能互联设备开发(微课版)》-2.2.1 鸿蒙构建工具链介绍
- 测量初步与简单机械运动(原卷版+解析)-2023年中考物理二轮复习
- 第五章 物体的运动 专项训练-2024苏科版八年级物理上册
- 湖南省益阳市高职单招2023年医学综合第一次模拟卷(附答案)
- 桂工10级资勘优秀灌阳实习报告
- 旋挖桩施工技术交底
- 2020西式面点师(初级)考试题库及西式面点师(初级)模拟考试
- 华为公司基本法
- 航空情报执照考试题库5航行通告
- 《线段的中点》“优课”教学设计
- 甲状腺癌NCCN指南中文版2021.v2
- 变配电室的巡检制度
- 电费分割单模板
- 2022英语课标与2011课标对比变化
评论
0/150
提交评论