考点解析广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练试卷(解析版含答案)_第1页
考点解析广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练试卷(解析版含答案)_第2页
考点解析广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练试卷(解析版含答案)_第3页
考点解析广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练试卷(解析版含答案)_第4页
考点解析广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练试卷(解析版含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省普宁市中考数学真题分类(位置与坐标)汇编同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(

)A.(2,3) B.(0,3) C.(3,2) D.(2,2)2、在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34) B.(67,33) C.(100,33) D.(99,34)3、点关于轴的对称点的坐标为(

).A. B. C. D.4、在平面直角坐标系中,点在第一、三象限的角平分线上,则m的值为(

)A.4 B. C. D.4或5、如图,长方形的各边分别平行于轴或轴,物体甲和物体乙分别由点同时出发,沿矩形的边作环绕运动,物体甲按逆时针方向以个单位/秒匀速运动,物体乙按顺时针方向以个单位/秒匀速运动,则两个物体运动后的第次相遇地点的坐标是(

)A. B. C. D.6、在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m27、在平面直角坐标系中,点关于轴的对称点的坐标是(

)A. B. C. D.8、若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则(

)A.m=2,n=0 B.m=2,n=﹣2 C.m=4,n=2 D.m=4,n=﹣2第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图所示,在数轴上点A所表示的数为a,则a的值为________2、我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作,则向西走5米,再向北走3米记作_________;数对表示___________.3、在平面直角坐标系中,点关于直线的对称点的坐标是_____.4、点不在第________象限.如果点B坐标为且轴,则线段的中点C的坐标为__________.5、如图,已知雷达探测器在一次探测中发现了两个目标,、,其中的位置可以表示成,那么可以表示为______.6、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2020的坐标为________________.7、如图,在平面直角坐标系中,点A(−4,0),B(0,2),作,使与全等,则点(不与点重合)的坐标为______.三、解答题(7小题,每小题10分,共计70分)1、如图,分别以矩形ABCD的两条对称轴为x轴和y轴建立平面直角坐标系,若点A的坐标为(4,3).(1)写出矩形的另外三个顶点B,C,D的坐标;(2)求该矩形的面积.2、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在图中作出△ABC关于x轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案)A1________;B1________;C1________(3)求△ABC的面积.3、如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)如果台阶有10级,请你求出该台阶的长度和高度;(3)若这10级台阶的宽度都是2m,单位长度为1m,现要将这些台阶铺上地毯,需要多少平方米?4、如图,正方形网格中一线段的两个端点的坐标分别为(1)在正方形网格中建立平面直角坐标系;(2)若点在轴上运动,当长度最小时,点的坐标为,依据是(3)在(2)的条件下,连接,求的面积.5、在平面直角坐标系中,点.(1)若点P与轴的距离为8,求m的值;(2)若点P在过点且与轴平行的直线上,求△AOP的面积.6、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.7、如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.-参考答案-一、单选题1、D【解析】【详解】解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.2、C【解析】【详解】试题分析:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.考点:1.坐标确定位置;2.规律型:点的坐标.3、A【解析】【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标变为相反数,纵坐标不变,则点关于轴的对称点的坐标为,故选:A.【考点】本题考查了坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.4、A【解析】【分析】第一、三象限的角平分线解析式为y=x,代入即可求解.【详解】解:点在第一、三象限的角平分线上,∴解得,.故选:A.【考点】本题考查的知识点是点的坐标的性质,由题意得出一、三象限的角平分线解析式为y=x是解此题的关键.5、D【解析】【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】∵矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇,此时相遇点的坐标为:(-1,-1),故选:D.【考点】本题考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.6、A【解析】【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】解:由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【考点】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.7、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【考点】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.8、B【解析】【分析】根据点(x,y)关于x轴对称的点的坐标为(x,﹣y)即可求得m、n值.【详解】解:∵点A(﹣4,m﹣3),B(2n,1)关于x轴对称,∴﹣4=2n,m﹣3=﹣1,解得:n=﹣2,m=2,故选:B.【考点】本题考查了坐标与图形变换-轴对称、解一元一次方程,熟练掌握关于坐标轴对称的的点的坐标特征是解答的关键.二、填空题1、【解析】【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:如图:由图可知:,∵数轴上点A所表示的数为a,∴,故答案为:.【考点】本题考查了数轴和实数,勾股定理的应用,能读懂图是解此题的关键.2、

向西走2米,再向南走6米【解析】【分析】由规定向东和向北方向为正,可得向西,向南方向为负,同时可得向东与向西写在有序数对的第一个,从而可得答案.【详解】解:由题意得:向西走5米,再向北走3米记作:数对表示向西走2米,再向南走6米,故答案为:;向西走2米,再向南走6米.【考点】本题考查的是利用有序数对表示行进路线,正确的理解题意是解题的关键.3、【解析】【分析】先求出点到直线的距离,再根据对称性求出对称点到直线的距离,从而得到点的横坐标,即可得解.【详解】∵点,∴点到直线的距离为,∴点关于直线的对称点到直线的距离为3,∴点的横坐标为,∴对称点的坐标为.故答案为.【考点】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线的距离,从而得到横坐标是解题的关键,作出图形更形象直观.4、

.【解析】【分析】根据解得即可判断点A不在第二象限,由轴,可得,由此求解即可.【详解】解:当,解得,∴此时a不存在,即点不在第二象限;∵点B坐标为且轴,∴,∴,∴,,∵,∴中点C的横坐标,∴,故答案为:二;.【考点】本题主要考查了坐标与图形,根据点的坐标判断点所在的象限,解不等式组,解题的关键在于能够熟练掌握相关知识进行求解.5、【解析】【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【详解】∵(a,b)中,b表示目标与探测器的距离;a表示以正东为始边,逆时针旋转后的角度,A的位置可以表示成(60°,6),∴B可以表示为(150°,4).故答案为:(150°,4)

.【考点】本题考查了坐标确定位置,解决本题的关键根据A的位置可以表示方法确定:距离是自内向外的环数,角度是所在列的度数.6、(1010,0)【解析】【分析】根据图形分别求出n=1、2、3时对应的点An的坐标,然后根据变化规律写出即可.【详解】解:观察图形,除A1、A2、A3外,每隔4次则循环出现在正方形的四个顶点处,故:且(2020-3)÷4=504余1,故A2020位于正方形的左下角处。由图可知,点A4(2,0),点A8(4,0),点A12(6,1),…故A4n的坐标为(2n,0).所以,点A2020的坐标为(1010,0),故答案为:(1010,0).【考点】本题考查了找规律中的周期问题,周期问题中余1则和周期中的第1个数相同,余2则和周期中的第2个数相同,……,整除则和周期中的最后一个数相同.7、或或【解析】【分析】利用全等三角形的判定,画出图形即可解决问题.【详解】解:观察图形可知,当△ABO△CBO时,点C坐标为(4,0);当△ABO△C1OB时,点C1坐标为(4,2);当△ABO△C2OB时,点C2坐标为(-4,2);∴满足条件的点C有3个,点C坐标为(4,0)或(4,2)或(−4,2).故答案为:(4,0)或(4,2)或(−4,2).【考点】本题考查全等三角形的性质、坐标与图形的性质等知识,解题的关键是学会两条数形结合的思想解决问题,属于中考常考题型.三、解答题1、(1)B(4,-3),C(-4,-3),D(-4,3).(2)S矩形ABCD=48【解析】【分析】(1)根据矩形的性质和矩形的对称性即可得到结论;(2)根据矩形的面积公式即可得到结论.【详解】(1)∵四边形ABCD是矩形,以矩形ABCD的两条对称轴为x轴和y轴建立直角坐标系.点A的坐标为(4,3),∴B(4,﹣3),C(﹣4,﹣3),D(﹣4,3);(2)∵AB=6,AD=8,∴矩形ABCD的面积=6×8=48.【考点】本题考查了坐标与图形的性质,矩形的对称性,解题的关键是掌握矩形是中心对称图形,对称中心是对角线的交点,将矩形与坐标系结合在一起即可确定点的坐标.2、(1)见解析(2)(1,-2),(3,-1),(-2,1)(3)【解析】【分析】(1)分别确定关于轴的对称点再顺次连接即可;(2)根据点在坐标系内的位置,直接写出其坐标即可;(3)利用长方形的面积减去周围三个三角形的面积即可.(1)解:∵A(1,2),B(3,1),C(﹣2,﹣1).分别确定A、B、C关于x轴的对称点A(1,-2)、B(3,-1)、C(-2,1),顺次连结即可,

如图,是所求作的三角形,(2)解:根据点在坐标系内的位置可得:故答案为:(1,-2),(3,-1),(-2,1)(3)解:【考点】本题考查的是坐标与图形,轴对称的作图,图形面积的计算,掌握“画关于轴对称的图形”是解本题的关键.3、(1)建立平面直角坐标系见解析,C(2,2),D(3,3),E(4,4),F(5,5);(2)11;10;(3)需要42平方米.【解析】【分析】(1)以点A为坐标原点建立平面直角坐标系,然后写出各点的坐标即可;(2)根据平移的性质求横向与纵向的长度,即为台阶的长度和高度;(3)根据(2)求出地毯的长度,然后乘以台阶的宽度计算即可得解.【详解】(1)建立平面直角坐标系如图所示,C(2,2),D(3,3),E(4,4),F(5,5);(2)台阶的长度:1×(10+1)=11,高度:1×10=10;(3)∵单位长度为1m,∴地毯的长度为:(11+10)×1=21m,∵台阶的宽度都是2m,∴地毯的面积为21×2=42m2,答:将这些台阶铺上地毯,需要42平方米.【考点】本题考查了坐标与图形性质,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的坐标的方法,平移的性质.4、(1)见解析;(2)(5,0),垂线段最短;(3)3【解析】【分析】(1)根据点A和点B的坐标找到原点位置,并建立坐标系即可;(2)根据垂线段最短的基本事实,过A作x轴的垂线,垂足为C,求出C坐标即可;(3)以AC为底,计算△ABC的面积,利用公式计算结果即可.【详解】(1)如图所示:(2),垂线段最短.(3)如图所示:所以的面积为.【考点】考查平面直角坐标系内坐标以及几何的一些问题,学生要熟练掌握平面直角坐标系的相关知识点,并结合三角形等几何问题解出本题.5、(1)或;(2)105.【解析】【分析】(1)由点P与轴的距离为8,可得,再结合绝对值的性质解题即可;(2)根据点P在过点且与轴平行的直线上,即,由此解得的值,继而解得点的坐标,解得的长,最后由三角形面积公式解题.【详解】解:(1)由题意得∴4m+5=8或4m+5=-8∴或;(2)由题意得5-m=-5∴m=10∴∴AP=42∴.【考点】本题考查坐标与图形的性质,涉及绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论