七年级上学期数学压轴必考题型-整式中的规律探索问题(含答案)_第1页
七年级上学期数学压轴必考题型-整式中的规律探索问题(含答案)_第2页
七年级上学期数学压轴必考题型-整式中的规律探索问题(含答案)_第3页
七年级上学期数学压轴必考题型-整式中的规律探索问题(含答案)_第4页
七年级上学期数学压轴必考题型-整式中的规律探索问题(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题整式中的规律探索问题类型一、数字类规律探索例.a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为,-1的差倒数为,已知,是差倒数,是差倒数,是差倒数,以此类推……,的值是()A.5 B. C. D.【变式训练1】阅读解答:(1)填空:_____;_____;_____……(2)探索(1)中式子的规律,试写出第n个等式_________;(3)根据上述规律,计算:.【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2021个数的和是______.【变式训练3】已知整数,,…,(n为正整数)满足,,,,…,以此类推,则=__________.类型二、图形类规律探索例.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…解答下面的问题:(1)按此规律第6个图形中共有点的个数是_______.(2)若n个图形中共有166个点,求n的值.【变式训练1】将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【变式训练2】如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,摆第个图案需要_______________枚棋子.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第层含有正三角形个数为___个.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为()A.99 B.100 C.101 D.1022.计算:,,,,,…归纳各计算结果中各位数字的规律,猜测的个位数字是______.3.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.4.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中,,则的值为________.5.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子____把.6.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n(n为正整数)张桌子时,最多可就坐_____人.7.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:,,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.8.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n表示六边形边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么m和n的关系是什么?专题整式中的规律探索问题类型一、数字类规律探索例.a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为,-1的差倒数为,已知,是差倒数,是差倒数,是差倒数,以此类推……,的值是()A.5 B. C. D.【答案】B【解析】∵,是的差倒数,∴,∵是的差倒数,是的差倒数,∴,∴,根据规律可得以,,为周期进行循环,因为2021=673×3…2,所以.故选B.【变式训练1】阅读解答:(1)填空:_____;_____;_____……(2)探索(1)中式子的规律,试写出第n个等式_________;(3)根据上述规律,计算:.【答案】(1)1,0;2,1;4,2;(2)2n-2n-1=2n-1;(3)【解析】(1)21-20=1=20,22-21=2=21,23-22=4=22;(2)由题意可得:2n-2n-1=2n-1;(3)设,∴,∴==.故答案为:(1)1,0;2,1;4,2;(2)2n-2n-1=2n-1;(3)【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2021个数的和是______.【答案】01【解析】由题意得:第3个数是,第4个数是,第5个数是,第6个数是,则前6个数的和是,第7个数是,第8个数是,归纳类推得:这2021个数是按循环往复的,,且前6个数的和是0,这2021个数的和与前5个数的和相等,即为,故答案为:0,1.【变式训练3】已知整数,,…,(n为正整数)满足,,,,…,以此类推,则=__________.【答案】【解析】由题知a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=-|a4+4|=-2,a6=-|a5+5|=-3,…,所以n是奇数时,an=,n是偶数时,an=,∴a2021=-1010,故答案为:-1010.类型二、图形类规律探索例.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…解答下面的问题:(1)按此规律第6个图形中共有点的个数是_______.(2)若n个图形中共有166个点,求n的值.【答案】(1)64;(2)n=10.【解析】(1)第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图点的个数为1+1×3+2×3+3×3+…+3n=+1.所以第6个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3+6×3=64.故答案为:64;(2)当+1=166时,解得n=10,n=-11(负值舍去).故答案为:(1)64;(2)n=10.【变式训练1】将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【解析】第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:=3,第③个图形中的黑色圆点的个数为:=6,第④个图形中的黑色圆点的个数为:=10,...第n个图形中的黑色圆点的个数为,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即=1275,故答案为:1275.【变式训练2】如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,摆第个图案需要_______________枚棋子.【答案】【解析】时,总数是;时,总数为;时,总数为枚;…;时,有枚.故答案为:.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第层含有正三角形个数为___个.【答案】114【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,则第n层中含有正三角形个数是6+12×(n-1)=个,故答案为:114,.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为()A.99 B.100 C.101 D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n个图中有1+2×n=2n+1=201(个)正方形,解得n=100故选B.2.计算:,,,,,…归纳各计算结果中各位数字的规律,猜测的个位数字是______.【答案】1【详解】解:由,,,,,,,…,可知计算结果中的个位数字以1、3、7、5为一个循环组依次循环,∵,∴的个位数字是1,故答案为:1.3.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16674【详解】每一行的最后一个数字分别是1,4,7,10,……,第n行的最后一个数字为:,第6行最后一个数字为:;,解得:,故答案为:16,674.4.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中,,则的值为________.【答案】【详解】解:∵1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,

∴右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∴M=m(n+1),∴M=11×(12+1)=143.

故答案为:143.5.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子____把.【答案】14【详解】解:设n张桌子需配椅子an(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴an=2n+4,∴a5=2×5+4=14.故答案为:14.6.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n(n为正整数)张桌子时,最多可就坐_____人.【答案】(6n+2)【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人.拼2张桌子,可以坐[2+(6×2)]人.拼3张桌子,可以坐[2+(6×3)]人.…拼接n(n为正整数)张桌子,可以坐(6n+2)人.故答案是:(6n+2).7.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:,,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.【答案】(1),符合;(2);(3)见解析【详解】解:(1)由题意得:,符合;(2);答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x,则其后的数为(x+1),第二行的两个数分别为(x+7),(x+8),根据题意,得.8.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n表示六边形边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么m和n的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论