版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
许昌市数学模拟试卷分类汇编七年级苏科下册期末(及答案)一、幂的运算易错压轴解答题1.若am=an(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.2.阅读理解:乘方的定义可知:an=a×a×a×…×a(n个a相乘).观察下列算式回答问题:32×35=(3×3)×(3×3×3×3×3)=3×3×…×3=37(7个3相乘)42×45=(4×4)×(4×4×4×4×4)=4×4×…×4=47(7个4相乘)52×55=(5×5)×(5×5×5×5×5)=5×5×…×5=57(7个5相乘)(1)20172×20175=________;(2)m2×m5=________;(3)计算:(﹣2)2016×(﹣2)2017.3.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.二、平面图形的认识(二)压轴解答题4.如图(1)问题情境:如图1,已知AB∥CD,∠APC=108°。求∠PAB+∠PCD的度数。经过思考,小敏的思路是:如图2,过P作PE∥AB,根据平行线有关性质,可得∠PAB+∠PCD=________。(2)问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β。当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由。(3)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系。(4)问题拓展:如图4,MA1∥NAn,A1-B1-A2-…-Bn-1-An,是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为________
。5.在中,为直线AC上一点,E为直线AB上一点,(1)如图1,当D在AC上,E在AB上时,求证;(2)如图2,当D在CA的延长线上,E在BA的延长线上时,点G在EF上,连接AG,且,求证:(3)如图3,在(2)的条件下,连接BG,当BG平分时,将沿着AG折至探究与的数量关系.6.如图所示,点P在∠AOB内,点M、N分别是点P关于AO、BO所在直线的对称点.(1)若△PEF的周长为20,求MN的长.(2)若∠O=50°,求∠EPF的度数.(3)请直接写出∠EPF与∠O的数量关系是________三、整式乘法与因式分解易错压轴解答题7.(探究)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式________.(用含a,b的等式表示)(2)(应用)请应用这个公式完成下列各题:①已知4m2=12+n2,2m+n=4,则2m﹣n的值为________.②计算:20192﹣2020×2018.________(3)(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.8.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.9.现有若干张如图1所示的正方形纸片A,B和长方形纸片C.(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:________;(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是________,并请你在图3位置画出拼成的长方形________;(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.四、二元一次方程组易错压轴解答题10.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)100012001500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).11.如果A,B都是由几个不同整数构成的集合,由属于A又属于B的所有整数构成的集合叫做A,B的交集,记作A∩B.例如:若A={1,2,3},B={3,4,5},则A∩B={3};若A={0,﹣62,37,2},B={2,﹣1,37,﹣5,0,19},则A∩B={37,0,2}.(1)已知C={4,3},D={4,5,6},则C∩D={________};(2)已知E={1,m,2},F={6,7},且E∩F={m},则m=________;(3)已知P={2m+1,2m﹣1},Q={n,n+2,n+4},且P∩Q={m,n},如果关于x的不等式组,恰好有2019个整数解,求a的取值范围.12.如图,在平面直角坐标系中,把一个点的横、纵坐标都乘以同一个实数,然后将得到的点先向右平移个单位,再向上平移个单位,得到点(1)若,,,,则点坐标是________;(2)对正方形及其内部的每个点进行上述操作,得到正方形及其内部的点,其中点的对应点分别为.求;(3)在(2)的条件下,己知正方形内部的一个点经过上述操作后得到的对应点与点重合,求点的坐标.五、一元一次不等式易错压轴解答题13.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则.(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.14.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发700千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲
▲15.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金3800元,请设计几种购买方案供这个学校选择.(两种规格的书柜都必须购买)【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:原方程等价于2x+1=23,x+1=3,解得x=2(2)解:原方程等价于34x=38,4x=8,解得x=2【解析】【分析】(1)根据同底数幂相乘,解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2(2)解:原方程等价于34x=38,4x=8,解得x=2【解析】【分析】(1)根据同底数幂相乘,底数不变,指数相加,可得出x的值。(2)根据幂的乘方公式(am)n=amn,可得出x的值。2.(1)20177(2)m7(3)解:(﹣2)2016×(﹣2)2017=(﹣2)2016+2017=(﹣2)4033=﹣24033【解析】【解答】解:(1)20172×20175=20解析:(1)20177(2)m7(3)解:(﹣2)2016×(﹣2)2017=(﹣2)2016+2017=(﹣2)4033=﹣24033【解析】【解答】解:(1)20172×20175=20177,故答案为:20177;(2)m2×m5=m7,故答案为:m7;【分析】(1)根据同底数幂的乘法可以解答本题;(2)根据同底数幂的乘法可以解答本题;(3)根据同底数幂的乘法可以解答本题.3.(1)解:12*3=1012×103=1015,2*5=102×105=107(2)解:不相等.∵(a*b)*c=(10a×10b)*c=10a+b*c=1010a+b×10c=1解析:(1)解:12*3=1012×103=1015,2*5=102×105=107(2)解:不相等.∵(a*b)*c=(10a×10b)*c=10a+b*c=×10c=,a*(b*c)=a*(10b×10c)=a*10b+c=10a×=,∴(a*b)*c≠a*(b*c)【解析】【分析】(1)依据定义列出算式,然后再依据同底数幂的乘法法则进行计算即可,最后,再进行比较即可;(2)首先依据定义进行进行计算,然后,依据计算结果进行判断即可.二、平面图形的认识(二)压轴解答题4.(1)252°(2)解:结论:.理由如下:如图1,过P作PQ∥AD.∵AD∥BC,∴AD∥PQ,PQ∥BC.∵PQ∥AD,∴.同理,.∴(3)解:当点P在B、O两点之间时,如图2,则有;当点P在射线AM上时,如图3,则有.(4)【解析】【解答】解:(1)过P作PE∥AB∵AB∥CD,∴AB∥CD∥PE∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°
∴∠PAB+∠APE+∠PCD+∠CPE=360°即∠PAB+∠PCD+∠APC=360°∴∠PAB+∠PCD=360°-108°=252°.故答案为:252°.(4)如图,过点B1作B1C∥A1H,过A2点A2D∥A1H,过点B2作B2G∥A1H,∵A1H∥A3F∴A1H∥A3F∥B1C∥A2D∥A1H∥B2G,∴∠A1=∠1,∠3=∠2,∠4=∠5,∠6=∠A3,
∴∠A1+∠2+∠4+∠A3=∠1+∠3+∠5+∠6∴∠A1+∠B1A2B2+∠A3=∠A1B1A2+∠A2B2A3.由此规律可得:∠A1+∠A2++∠An=∠B1+∠B2++∠Bn.【分析】(1)过P作PE∥AB,结合已知可证得AB∥CD∥PE;再利用两直线平行,同旁内角互补可得到∠PAB+∠PCD+∠APC=360°,然后将∠APC=108°代入计算可求出∠PAB+∠PCD的度数。(2)如图1,过P作PQ∥AD,结合已知条件可证得AD∥PQ,PQ∥BC,利用平行线的性质可证得∠α=∠1,∠β=∠2,由此可证得结论.(3)分情况讨论:当点P在B、O两点之间时;当点P在射线AM上时,分别利用平行线的性质,可证得结论。(4)如图,过点B1作B1C∥A1H,过A2点A2D∥A1H,过点B2作B2G∥A1H,,结合已知条件可证得A1H∥A3F∥B1C∥A2D∥A1H∥B2G,利用两直线平行,内错角相等,可证得∠A1=∠1,∠3=∠2,∠4=∠5,∠6=∠A3,由此可推出∠A1+∠B1A2B2+∠A3=∠A1B1A2+∠A2B2A3,根据此规律可推出结论。5.(1)∵∠ADE=∠B,∠A=∠A,且∠ADE+∠A+∠AED=180°,∠B+∠A+∠ACB=180°,∴∠AED=∠ACB=90°,∴DE⊥AB(2)∵∠ADE=∠B,∠DAE=∠BAC,∴∠AED=∠ACB=90°,∴∠EAG+∠AGE=90°①,∵∠EAG−∠D=45°,∴2∠EAG−∠D=90°②,∵∠D+∠F=90°③,∴②+③得:2∠EAG+∠F=180°④,④−①×2得:∠F−2∠AGE=0°,∴∠F=2∠AGE,(3)如图3,∵BG平分∠ABC,∴∠ABG=∠ABC,∵将△AGB沿着AG折至△AGH,∴∠H=∠ABG=∠ABC,∵∠ADE=∠B,∴∠ADE=2∠H,且∠ADE=∠H+∠DGH,∴∠H=∠DGH,∴∠ADE=2∠DGH,∵∠F+∠CDF=90°,∴∠F+2∠HGD=90°.【解析】【分析】(1)通过三角形内角和定理,可得∠AED=∠ACB=90°,可得结论;(2)由直角三角形的性质和三角形内角和定理可得∠EAG+∠AGE=90°①,∠D+∠F=90°③,且2∠EAG−∠D=90°②,可以组成方程组,可得结论;(3)由角平分线的性质和折叠的性质可得∠ADE=2∠H,由外角性质可得∠ADE=2∠DGH,由直角三角形的性质可得∠F+2∠HGD=90°.6.(1)解:∵点M、N分别是点P关于AO、BO所在直线的对称点.∴OA垂直平分PM,OB垂直平分PN,∴EM=EP,FP=FN,∴MN=EM+EF+FN=EP+EF+FP=△PEF的周长,又∵△PEF的周长为20,∴MN=20cm.(2)解:由(1)知:EM=EP,FP=FN,∴∠PEF=2∠M,∠PFE=2∠N,∵∠PCE=∠PDF=90°,∴在四边形OCPD中,∠CPD+∠O=180°,又∵在△PMN中,∠MPN+∠M+∠N=180°,且∠CPD+∠O=180°,∴∠M+∠N=∠O=50°.∴在△PEF中,∠EPF+∠PEF+∠PFE=∠EPF+2∠M+2∠N=180°,即∠EPF=180°-2∠M-2∠N=180°-2(∠M+∠N)=180°-2∠O=80°.(3)∠EPF=180°-2∠O【解析】【解答】解:(3)由(2)可直接得到∠EPF=180°-2∠O.故答案为:∠EPF=180°-2∠O.【分析】(1)根据轴对称的性质可得EM=EP,FP=FN,进而推出MN=EM+EF+FN=EP+EF+FP=△PEF的周长即可;(2)由(1)及等腰三角形的性质、四边形的内角和找出∠M+∠N与∠O、∠EPF与∠O的关系即可;(3)由(2)可直接得到∠EPF=180°-2∠O.三、整式乘法与因式分解易错压轴解答题7.(1)(a+b)(a﹣b)=a2﹣b2(2)3;解:20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20解析:(1)(a+b)(a﹣b)=a2﹣b2(2)3;解:20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1(3)解:1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)=100+99+98+97+…+4+3+2+1=5050【解析】【解答】解:(1)探究:图1中阴影部分面积a2﹣b2,图2中阴影部分面积(a+b)(a﹣b),所以,得到乘法公式(a+b)(a﹣b)=a2﹣b2故答案为(a+b)(a﹣b)=a2﹣b2.(2)应用:①由4m2=12+n2得,4m2﹣n2=12∵(2m+n)•(2m+n)=4m2﹣n2∴2m﹣n=3故答案为3.【分析】探究:将两个图中阴影部分面积分别表示出来,建立等式即可;应用:①利用平方差公式得出(2m+n)•(2m+n)=4m2﹣n2,代入求值即可;②可将2020×2018写成(2019+1)×(2019﹣1),再利用平法差公式求值;拓展:利用平方差公式将1002﹣992写成(100+99)×(100﹣99),以此类推,然后化简求值.8.(1)(2a+b)(2b+a)=2a2+5ab+2b2(2)(a﹣b)2;(a﹣b)2=(a+b)2﹣4ab(3)解:①∵AB=4,长方形AGMB的面积与长方形EDHN的面积的差为S,解析:(1)(2a+b)(2b+a)=2a2+5ab+2b2(2)(a﹣b)2;(a﹣b)2=(a+b)2﹣4ab(3)解:①∵AB=4,长方形AGMB的面积与长方形EDHN的面积的差为S,∴大长方形的面积=(3a+b)(4+b)=7ab+4×3a+4×3a﹣S,∴S=4ab﹣4b+12a﹣b2;②设AB=m,∴大长方形的面积=(3a+b)(m+b)=7ab+3ma+3ma﹣S,∴S=4ab﹣b2+m(3a﹣b),∵若AB为任意值,且①中的S的值为定值,∴3a=b.【解析】【解答】解:(1)根据图可知长方形面积有(2a+b)(2b+a)=2a2+5ab+2b2;故答案为(2a+b)(2b+a)=2a2+5ab+2b2;(2)④图中阴影部分面积是(a﹣b)2,根据阴影部分面积可以是大正方形面积减去四个长方形面积,∴(a﹣b)2=(a+b)2﹣4ab,故答案为(a﹣b)2,(a﹣b)2=(a+b)2﹣4ab;【分析】(1)根据图形面积可知(2a+b)(2b+a)=2a2+5ab+2b2;(2)根据阴影部分面积可以是大正方形面积减去四个长方形面积,得到(a-b)2=(a+b)2-4ab;(3)①大长方形的面积=(3a+b)(4+b)=7ab+4×3a+4×3a-S;②设AB=m,大长方形的面积=(3a+b)(m+b)=7ab+3ma+3ma-S,3a-b=0;9.(1)a2+2ab+b2=(a+b)2(2)2;(3)a2+5ab+4b2=(a+b)(a+4b).【解析】【解答】解:(1)利用面积相等得a2+2ab+b2=(a+b)2;(解析:(1)a2+2ab+b2=(a+b)2(2)2;(3)a2+5ab+4b2=(a+b)(a+4b).【解析】【解答】解:(1)利用面积相等得a2+2ab+b2=(a+b)2;(2)由于有a2+3ab,则a2+3ab+nb2分解为(a+b)(a+2b),因此得到n=2,如图:【分析】(1)利用面积相等易得a2+2ab+b2=(a+b)2;(2)由于有a2+3ab,则a2+3ab+nb2分解为(a+b)(a+2b),因此得到n=2,再画图;(3)利用面积可分解因式.四、二元一次方程组易错压轴解答题10.(1)解:设需甲种车型x辆,乙种车型y辆由题意得:{5x+8y=1501000x+1200y=24000解得:{x=6y=15答:需甲种车型6辆,乙种车型15辆(2)解:设需解析:(1)解:设需甲种车型x辆,乙种车型y辆由题意得:解得:答:需甲种车型6辆,乙种车型15辆(2)解:设需甲种车型a辆,乙种车型b辆,其中a、b为正整数,则需丙种车型辆由题意得:整理得:,即均为正整数或①当时,,则总运费为(元)②当时,,则总运费为(元)综上,可能的运送方案有两种:方案一,需甲种车型4辆,乙种车型5辆,丙种车型9辆;方案二,需甲种车型2辆,乙种车型10辆,丙种车型6辆.方案二的运费最省,运费为23000元.【解析】【分析】(1)设需甲种车型x辆,乙种车型y辆,然后根据物资总重量和总运费建立方程组,求解即可得;(2)设需甲种车型a辆,乙种车型b辆,则需丙种车型辆,再根据总重量得出关于a、b的等式,然后根据正整数性求出a、b的值,最后根据汽车费用表求解即可.11.(1)4(2)6或7(3)解:∵P={2m+1,2m-1},Q={n,n+2,n+4},且P∩Q={m,n},∴①{2m+1=n2m-1=m或②{2m-1=n2m+1=m,解析:(1)4(2)6或7(3)解:∵P={2m+1,2m-1},Q={n,n+2,n+4},且P∩Q={m,n},∴①或②,由①得,∵n+2=5≠1,n+4=7≠1,故①不合题意;由②得,∵n+2=-1=m,∴符合题意,故m=-1,n=-3,∵关于x的不等式组,恰好有2019个整数解,∴2012<a≤2013.【解析】【解答】解:(1)∵C={4,3},D={4,5,6},∴C∩D═{4};故答案为4;(2)∴E={1,m,2},F={6,7},且E∩F={m},∴m=6或7,故答案为6或7;【分析】(1)直接根据交集的定义求得即可;(2)直接根据交集的定义即可求得;(3)根据交集的定义得出m,n的值,然后根据不等式组的整数解即可得出关于a的不等式组,求出即可.12.(1)(2)解:根据题意得:解得{a=12m=12n=2即a=12,m=12,n=2;(3)解:设点F的坐标为(x,y),根据题意得{12x+1解析:(1)(2)解:根据题意得:解得即,,;(3)解:设点的坐标为,根据题意得解得∴的坐标为.【解析】【解答】解:(1)∵,,,,∴∴故答案为:;【分析】(1)根据题意和平移的性质求点坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点的坐标为,根据平移规律列方程组求解.五、一元一次不等式易错压轴解答题13.(1){a>0b<0;{a<0b>0(2)解:∵不等式大于0,∴分子分母同号,故有:{x-2>0x+1>0或{x-2<0x+1<0解不等式组得到:x>2或.故答案为:x解析:(1);(2)解:∵不等式大于0,∴分子分母同号,故有:或解不等式组得到:或.故答案为:或.(3)或【解析】【解答】解:(1)若,则分子分母异号,故或故答案为:或;(3)由题意知,不等式的分子为是个正数,故比较两个分母大小即可.情况①:时,即时,,解得:.情况②:时,即时,,解得:.情况③:时,此时无解.故答案为:或.【分析】(1)根据有理数的运算法则,两数相除,同号得正,异号得负即可解答;(2)根据不等式大于0得到分子分母同号,再分类讨论即可;(3)观察不等式后,发现分子相同且为正数,故只需要比较分母,再对分母的正负性进行分类讨论即可.14.(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+100解析:(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不锈钢管技术协议书
- 大灶用工协议书
- 项目协作协议书
- 跨境收款协议书
- 广告协议框架合同范本
- 父母房屋财产分割协议书
- 2025年电暖器维修合同协议
- 《金融风险管理》 -课件 -第1、2章 金融风险管理概论、风险与收益关系理论基础
- 2025年电竞游戏直播平台内容授权合同协议
- 2025年电竞赛事合作协议
- 天津海河教育园区管委会招聘考试笔试试题(含答案)
- 屯昌恒能世纪独立共享储能项目环评报告表
- 2025年公文写作公文试题及答案
- 人事稽核管理办法
- 新疆肥料管理办法
- 2024-2030全球ARM云手机行业调研及趋势分析报告
- DB42T 851-2012 湖北省公路工程监理规范
- 货物溢出短装管理制度
- 内镜下早癌检出护理配合
- 《信息安全与个人隐私保护》课件
- 超市商品营销管理制度
评论
0/150
提交评论