版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学数学复数选择题专项训练的专项培优易错试卷练习题及答案一、复数选择题1.设复数,则的虚部是()A. B. C. D.答案:A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.2.已知复数满足,则复数对应的点在()上A.直线 B.直线 C.直线 D.直线答案:C【分析】利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:.3.已知为虚数单位,若复数为纯虚数,则()A. B. C. D.答案:A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则,所以,所以故选:A解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则,所以,所以故选:A4.若复数满足,则复数的虚部为()A. B. C. D.答案:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.5.若是纯虚数,则实数的值为().A. B.0 C.1 D.答案:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.6.设复数,则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D7.已知复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C.解析:C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C.8.若,则()A. B.4 C. D.8答案:A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A9.复数(为虚数单位)在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.10.已知,则复平面内与对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C.解析:C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C.11.复数,(为虚数单位),则虚部等于().A. B.3 C. D.答案:B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B12.设,则的虚部为()A. B.C. D.答案:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.13.已知为虚数单位,则()A. B. C. D.答案:C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C14.复数()A.1+i B.-1+i C.1-i D.-1-i答案:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C15.已知复数,则的虚部是()A. B. C.1 D.i答案:C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.二、复数多选题16.已知复数满足,则可能为().A.0 B. C. D.答案:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.17.已知复数,则()A. B.的虚部是C.若,则, D.答案:CD【分析】取特殊值可判断A选项的正误;由复数的概念可判断B、C选项的正误;由复数模的概念可判断D选项的正误.【详解】对于A选项,取,则,A选项错误;对于B选项,复数的虚部为,B选项错误;解析:CD【分析】取特殊值可判断A选项的正误;由复数的概念可判断B、C选项的正误;由复数模的概念可判断D选项的正误.【详解】对于A选项,取,则,A选项错误;对于B选项,复数的虚部为,B选项错误;对于C选项,若,则,,C选项正确;对于D选项,,D选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.18.下面关于复数的四个命题中,结论正确的是()A.若复数,则 B.若复数满足,则C.若复数满足,则 D.若复数,满足,则答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A选项,设复数,则,因为,所以,因此,即A正确;B选项,设复数,则,因为,所,若,则;故B错;C选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A选项,设复数,则,因为,所以,因此,即A正确;B选项,设复数,则,因为,所,若,则;故B错;C选项,设复数,则,因为,所以,即,所以;故C正确;D选项,设复数,,则,因为,所以,若,能满足,但,故D错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.19.下列关于复数的说法,其中正确的是()A.复数是实数的充要条件是B.复数是纯虚数的充要条件是C.若,互为共轭复数,则是实数D.若,互为共轭复数,则在复平面内它们所对应的点关于轴对称答案:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数,设,则,所以是实数,故正确;对于:若,互为共轭复数,设,则,所对应的坐标分别为,,这两点关于轴对称,故错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.20.已知复数(其中为虚数单位),则以下说法正确的有()A.复数的虚部为 B.C.复数的共轭复数 D.复数在复平面内对应的点在第一象限答案:BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】因为复数,所以其虚部为,即A错误;,故B正确;解析:BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】因为复数,所以其虚部为,即A错误;,故B正确;复数的共轭复数,故C正确;复数在复平面内对应的点为,显然位于第一象限,故D正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.21.已知为虚数单位,以下四个说法中正确的是().A.B.C.若,则复平面内对应的点位于第四象限D.已知复数满足,则在复平面内对应的点的轨迹为直线答案:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解】,则A正确;虚数不能比较大小,则B错误;,则,解析:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解】,则A正确;虚数不能比较大小,则B错误;,则,其对应复平面的点的坐标为,位于第三象限,则C错误;令,,,解得则在复平面内对应的点的轨迹为直线,D正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.22.已知复数则()A.是纯虚数 B.对应的点位于第二象限C. D.答案:AD【分析】利用复数的概念及几何有意义判断A、B选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C、D是否正确.【详解】利用复数的相关概念可判断A正确;对于B选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A、B选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C、D是否正确.【详解】利用复数的相关概念可判断A正确;对于B选项,对应的点位于第四象限,故B错;对于C选项,,则,故C错;对于D选项,,则,故D正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.23.设i为虚数单位,复数,则下列命题正确的是()A.若为纯虚数,则实数a的值为2B.若在复平面内对应的点在第三象限,则实数a的取值范围是C.实数是(为的共轭复数)的充要条件D.若,则实数a的值为2答案:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B:在复平面内对应的点在第三象限,有解得,故错误选项C:时,;时,即,它们互为充要条件,故正确选项D:时,有,即,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围24.任何一个复数(其中、,为虚数单位)都可以表示成:的形式,通常称之为复数的三角形式.法国数学家棣莫弗发现:,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.B.当,时,C.当,时,D.当,时,若为偶数,则复数为纯虚数答案:AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.【详解】对于A选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.【详解】对于A选项,,则,可得,,A选项正确;对于B选项,当,时,,B选项错误;对于C选项,当,时,,则,C选项正确;对于D选项,,取,则为偶数,则不是纯虚数,D选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.以下为真命题的是()A.纯虚数的共轭复数等于 B.若,则C.若,则与互为共轭复数 D.若,则与互为共轭复数答案:AD【分析】根据纯虚数的概念即可判断A选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD选项.【详解】解:对于A,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD选项.【详解】解:对于A,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A正确;对于B,由,得出,可设,则,则,此时,故B错误;对于C,设,则,则,但不一定相等,所以与不一定互为共轭复数,故C错误;对于D,,则,则与互为共轭复数,故D正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.26.给出下列命题,其中是真命题的是()A.纯虚数的共轭复数是 B.若,则C.若,则与互为共轭复数 D.若,则与互为共轭复数答案:AD【分析】A.根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A.根据共轭解析:AD【分析】A.根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A.根据共轭复数的定义,显然是真命题;B.若,则,当均为实数时,则有,当,是虚数时,,所以B是假命题;C.若,则可能均为实数,但不一定相等,或与的虚部互为相反数,但实部不一定相等,所以C是假命题;D.若,则,所以与互为共轭复数,故D是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.27.已知复数,下列结论正确的是()A.“”是“为纯虚数”的充分不必要条件B.“”是“为纯虚数”的必要不充分条件C.“”是“为实数”的充要条件D.“”是“为实数”的充分不必要条件答案:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分条件;若,即,可得,则为实数,“”是“为实数”的充要条件;,为虚数或实数,“”是“为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.28.若复数,则()A.B.z的实部与虚部之差为3C.D.z在复平面内对应的点位于第四象限答案:AD【分析】根据复数的运算先求出复数z,再根据定义、模、几何意义即可求出.【详解】解:,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年内蒙古机电职业技术学院单招职业技能考试必刷测试卷及答案解析(夺冠系列)
- 2026年云南外事外语职业学院单招综合素质考试题库及答案解析(名师系列)
- 2026年四川艺术职业学院单招职业适应性考试题库及答案解析(名师系列)
- 2026年宿迁职业技术学院单招职业适应性考试题库附答案解析
- 房屋搭架安全协议书
- 房屋材料出售协议书
- 房屋签署售卖协议书
- 房屋资产转让协议书
- 手工课程免责协议书
- 手机回收合法协议书
- 二十届四中全会测试题及参考答案(第二套)
- GB/T 16271-2025钢丝绳吊索插编索扣
- T/CNCA 033-2022矿用链臂切顶机通用技术条件
- 清华大学出版社机械制图习题集参考答案(课堂PPT)
- 跗骨窦切口治疗跟骨骨折-尤伟夫课件
- 姚洋《发展经济学》考试重点+每章总结 北京大学出版社
- MBA-营销管理复习题精华及答案
- 运输公司驾驶员和车辆安全生产管理制度5篇
- 脾胃风湿病科护理组卧床患者便秘的健康教育知晓率
- 气相色谱质谱联用仪操作规程精
- 小儿肺炎的护理查房
评论
0/150
提交评论