版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市川汇区2025年数学高二第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.2.圆心,半径为的圆的方程是()A. B.C. D.3.焦点坐标为的抛物线的标准方程是()A. B.C. D.4.抛物线的准线方程是,则实数的值为()A. B.C.8 D.5.某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台 B.7千台C.8千台 D.9千台6.已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A. B.C. D.7.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.8.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品,若将如图所示的大教堂外形弧线的一段近似看成双曲线下支的一部分,离心率为,则该双曲线的渐近线方程为()A. B.C. D.9.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.10.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件11.已知M、N为椭圆上关于短轴对称的两点,A、B分别为椭圆的上下顶点,设、分别为直线的斜率,则的最小值为()A. B.C. D.12.按照小李的阅读速度,他看完《三国演义》需要40个小时.2021年12月20日,他开始阅读《三国演义》,当天他读了20分钟,从第二天开始,他每天阅读此书的时间比前一天增加10分钟,则他恰好读完《三国演义》的日期为()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日二、填空题:本题共4小题,每小题5分,共20分。13.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个14.已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)15.已知等比数列的各项均为实数,其前项和为,若,,则__________.16.若抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点到顶点的距离为.(1)求抛物线的方程;(2)已知过点的直线交抛物线于不同的两点,,为坐标原点,设直线,的斜率分别为,,求的值.18.(12分)在对某老旧小区污水分流改造时,需要给该小区重新建造一座底面为矩形且容积为324立方米的三级污水处理池(平面图如图所示).已知池的深度为2米,如果池四周围墙的建造单价为400元/平方米,中间两道隔墙的建造单价为248元/平方米,池底的建造单价为80元/平方米,池盖的建造单价为100元/平方米,建造此污水处理池相关人员的劳务费以及其他费用是9000元.(水池所有墙的厚度以及池底池盖的厚度按相关规定执行,计算时忽略不计)(1)现有财政拨款9万元,如果将污水处理池的宽建成9米,那么9万元的拨款是否够用?(2)能否通过合理的设计污水处理池的长和宽,使总费用最低?最低费用为多少万元?19.(12分)已知各项均为正数的等差数列满足,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设,求数列的前项和.20.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.21.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.22.(10分)已知数列的前n项和为,且,,数列满足,.(1)求和的通项公式;(2)求数列{}的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.2、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.3、D【解析】依次确定选项中各个抛物线的焦点坐标即可.【详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.4、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.5、A【解析】构造利润函数,求导,判断单调性,求得最大值处对应的自变量即可.【详解】设利润为y万元,则,∴.令,解得(舍去)或,经检验知既是函数的极大值点又是函数的最大值点,∴应生产6千台该产品.故选:A【点睛】利用导数求函数在某区间上最值的规律:(1)若函数在区间上单调递增或递减,与一个为最大值,一个为最小值(2)若函数在闭区间上有极值,要先求出上的极值,与,比较,最大的是最大值,最小的是最小值,可列表完成(3)函数在区间上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到6、A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A7、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.8、B【解析】求出的值,可得出双曲线的渐近线方程.【详解】由已知可得,因此,该双曲线的渐近线方程为.故选:B.9、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.10、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.11、A【解析】利用为定值即可获解.【详解】设则又,所以所以当且仅当,即,取等故选:A12、B【解析】由等差数列前n项和列不等式求解即可.【详解】由题知,每天的读书时间为等差数列,首项为20,公差为10,记n天读完.则40小时=2400分钟,令,得或(舍去),故,即第21天刚好读完,日期为2022年1月9日.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.14、【解析】求出两圆的圆心坐标,再利用两点式求出直线方程,再化成一般式即可【详解】解:圆,即,两圆的圆心为:和,这两圆的连心线方程为:,即故答案为:15、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.16、5【解析】根据抛物线的定义知点P到焦点距离等于到准线的距离即可求解.【详解】因为抛物线方程为,所以准线方程,所以点到准线的距离为,故点到该抛物线焦点的距离.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线的几何性质有焦点到顶点的距离为,从而即可求解;(2)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设的方程为,,,联立抛物线的方程,由韦达定理及两点间的斜率公式即可求解.【小问1详解】解:依题意,,解得,∴抛物线的方程为;【小问2详解】解:当直线的斜率不存在时,直线与抛物线仅有一个交点,不符合题意;当直线的斜率存在时,设的方程为,,,由消去可得,∵直线交抛物线于不同的两点,∴,由韦达定理得,∴.18、(1)不够;(2)将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.【解析】(1)根据题意结合单价直接计算即可得出;(2)设污水处理池的宽为米,表示出总费用,利用基本不等式可求.【小问1详解】如果将污水处理池的宽建成9米,则长为(米),建造总费用为:(元)因为,所以如果污水处理池的宽建成9米,那么9万元的拨款是不够用的.【小问2详解】设污水处理池的宽为米,建造总费用为元,则污水处理池的长为米.则因为,等号仅当,即时成立,所以时建造总费用取最小值90000,所以将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.19、(1),,;(2).【解析】(1)由等差中项的性质可求出,又,,构成等比数列,设出公差,代入可求出,从而求出数列的通项公式,代入可求出,的值,从而求出数列的通项公式;(2)将通项公式代入,运用裂项相消的方法可求出前项和.【详解】解析:(1)因为等差数列中,,所以,设数列公差为,因为,,构成等比数列,则,即,解得或(舍)即,又等比数列中,,所以,;(2)∵,∴,∴【点睛】易错点睛:(1)裂项相消时一定要注意分母的差,一般情况下分母的差是几,则要在裂项前面乘以几分之一;(2)裂项相消时要注意保留的项数.20、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.21、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解】∵ABCD为菱形,,∴为正三角形,∴.∵平面ABCD,∴与平面ABCD所成角,由,得,所以.如图,分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,则,,,,,,,设平面FAC的法向量为,则由可得,取,故可得平面FAC的一个法向量为,记直线与平面FAC的夹角为,则22、(1);;(2)【解析】(1)求数列的通项公式主要利用求解,分情况求解后要验证是否满足的通项公式,将求得的代入整理即可得到的通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年员工保密合同模板
- 妇产科子宫内膜异位症治疗方案探讨
- 【A4原卷】2025年六年级数学上册期末素养测评(二)
- 2026年郑州商贸旅游职业学院单招职业技能考试题库及答案1套
- 2026年吉林省长春市单招职业适应性测试题库必考题
- 2026年晋中职业技术学院单招职业技能测试题库必考题
- 2026年广东省佛山市单招职业适应性考试必刷测试卷附答案
- 2026年新疆天山职业技术大学单招职业倾向性测试题库附答案
- 2026年重庆公共运输职业学院单招职业技能考试题库及答案1套
- 2026年荆州理工职业学院单招职业适应性考试必刷测试卷及答案1套
- 教师跟岗培训总结汇报
- 2025年注册安全工程师考试金属非金属矿山(中级)安全生产专业实务试题附答案
- 个人生涯发展报告课件
- DZ∕T 0148-2014 水文水井地质钻探规程(正式版)
- 花鸟画知到章节答案智慧树2023年海南师范大学
- 第一章 社会学的创立和发展
- 常见肿瘤急症诊断与处理
- 人音一年级音乐上册动物说话
- 2022广东惠州市博罗县自然资源局补充公开招聘土地监察巡查协管员18人模拟检测试卷【共500题含答案解析】
- GB∕T 17466.1-2019 家用和类似用途固定式电气装置的电器附件安装盒和外壳 第1部分:通用要求
- 打印机报价单模板(1)
评论
0/150
提交评论