版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省池州市青阳一中2026届高二上数学期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆外切,则()A. B.C. D.2.已知向量,若,则()A. B.5C.4 D.3.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值4.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心5.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.6.已知数列满足,若.则的值是()A. B.C. D.7.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.28.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.9.已知函数,则()A. B.C. D.10.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.1111.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列12.若方程表示圆,则实数m的取值范围为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的n的值为__.14.经过点,的直线的倾斜角为___________.15.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.16.已知随机变量,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,分别是锐角内角,,对边,,.(1)求的值;(2)若的面积为,求的值.18.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.19.(12分)森林资源是全人类共有的宝贵财富,其在改善环境,保护生态可持续发展方面发挥着重要的作用.2020年12月12日,主席在全球气候峰会上通过视频发表题为《继往开来,开启全球应对气候变化的新征程》的重要讲话,宣布“到2030年,我国森林蓄积量将比2005年增加60亿立方米”.为了实现这一目标,某地林业管理部门着手制定本地的森林蓄积量规划.经统计,本地2020年底的森林蓄积量为120万立方米,森林每年以25%的增长率自然生长,而为了保证森林通风和发展经济的需要,每年冬天都要砍伐掉万立方米的森林.设为自2021年开始,第年末的森林蓄积量.(1)请写出一个递推公式,表示二间的关系;(2)将(1)中的递推公式表示成的形式,其中,为常数;(3)为了实现本地森林蓄积量到2030年底翻两番的目标,每年的砍伐量最大为多少万立方米?(精确到1万立方米)(可能用到的数据:,,)20.(12分)已知圆与x轴交于A,B两点,P是该圆上任意一点,AP,PB的延长线分别交直线于M,N两点.(1)若弦AP长为2,求直线PB的方程;(2)以线段MN为直径作圆C,当圆C面积最小时,求此时圆C的方程.21.(12分)已知函数.(1)设函数,讨论在区间上的单调性;(2)若存在两个极值点,()(极值点是指函数取极值时对应的自变量的值),且,证明:.22.(10分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.2、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B3、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减4、B【解析】利用三角形面积公式,推出点O到三边距离相等。【详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B5、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.6、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D7、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B8、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C9、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.10、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.11、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.12、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】明确程序运行的顺序,写出每次循环的m,n的值,直到判断符合条件时结束,即可得到结果.【详解】第一次循环,m=3,n=2;第二次循环,m=6,n=3;第三次循环,m=9,n=4;第四次循环,m=12,n=5,此时m+n>15,跳出循环,故答案为:5.14、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:15、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.16、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.18、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.19、(1);(2).;(3)19万立方米.【解析】(1)由题意得到;(2)若递推公式写成,则,再与递推公式比较系数;(3)若实现翻两番的目标,则,根据递推公式,计算的最大值.【详解】解:(1)由题意,得,并且.①(2)将化成,②比较①②的系数,得解得所以(1)中的递推公式可以化为.(3)因为,且,所以,由(2)可知,所以,即数列是以为首项,为公比的等比数列,其通项公式:,所以.到2030年底的森林蓄积量为该数列的第10项,即.由题意,森林蓄积量到2030年底要达到翻两番的目标,所以,即.即.解得.所以每年的砍伐量最大为19万立方米.【点睛】方法点睛:递推公式求通项公式,有以下几种方法:
型如:的数列的递推公式,采用累加法求通项;
形如:的数列的递推公式,采用累乘法求通项;
形如:的递推公式,通过构造转化为,构造数列是以为首项,为公比的等比数列,
形如:的递推公式,两边同时除以,转化为的形式求通项公式;
形如:,可通过取倒数转化为等差数列求通项公式.20、(1)或;(2).【解析】(1)根据圆的直径的性质,结合锐角三角函数定义进行求解即可;(2)根据题意,结合基本不等式和圆的标准方程进行求解即可.【小问1详解】在方程中,令,解得,或,因为AP,PB的延长线分别交直线于M,N两点,所以,圆心在x轴上,所以,因为,,所以有,当P在x轴上方时,直线PB的斜率为:,所以直线PB的方程为:,当P在x轴下方时,直线PB的斜率为:,所以直线PB的方程为:,因此直线PB的方程为或;【小问2详解】由(1)知:,,所以设直线的斜率为,因此直线的斜率为,于是直线的方程为:,令,,即直线的方程为:,令,,即,因为同号,所以,当且仅当时取等号,即当时取等号,于是有以线段MN为直径作圆C,当圆C面积最小时,此时最小,当时,和,中点坐标为:,半径为,所以圆的方程为:,同理当时,和,中点坐标为:,半径为,所以圆的方程为:,综上所述:圆C的方程为.21、(1)答案见解析(2)证明见解析【解析】(1)由题意得,然后对其求导,再分,两种情况讨论导数的正负,从而可求出函数的单调区间,(2)由(1)结合零点存在性定理可得在和上各有一个零点,且是的两个极值点,再将极值点代入导函数中化简结合已知可得,,从而将要证的结论转化为证,令,再次转化为利用导数求的最小值大于零即可【小问1详解】由,得,则,当时,在上单调递增;当时,令.当时,单调递增;当时,单调递减.综上,当时,的增区间为,无减区间当时,的增区间为,减区间为小问2详解】由(1)知若存在两个极值点,则,且,且注意到,所以在和上各有一个零点,且时,单调递减;当时,单调递增;当时,单调递减.所以是的两个极值点.,因为,所以,所以,所以,即,所以而,所以,所以,要证,即要证即要证:因为,所以所以,即要证:即要证:令,即要证:即要证:令当时,,所以在上单调增所以结论得证.【点睛】关键点点睛:此题考查导数的应用,考查利用求函数的单调区间,考查利用导数证明不等式,解题的关键是将两个极值点代入导函数中化简后,将问题转化为证明成立,换元后构造函数,再利用导数证明,考查数学转化思想和计算能力,属于较难题22、(1)证明见解析,是鳖臑,四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角即可;(2)PD是阳马P−ABCD的高,DE是鳖臑D−BCE的高,BC⊥CE,,由此能求出的值(3)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线与平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可【小问1详解】因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE又因为PD=CD,点E是PC的中点,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年红河州辅警协警招聘考试备考题库及完整答案详解1套
- 2023年铁岭辅警招聘考试题库含答案详解(模拟题)
- 2023年甘肃辅警招聘考试题库含答案详解(满分必刷)
- 2023年辖县辅警协警招聘考试备考题库及答案详解(典优)
- 2023年鹤岗辅警招聘考试真题含答案详解(黄金题型)
- 平顶山工业职业技术学院《古籍装帧》2024-2025学年第一学期期末试卷
- 上海市普陀区市级名校2026届高二上生物期末监测模拟试题含解析
- 湖南省洞口县2025-2026学年高二生物第一学期期末质量跟踪监视模拟试题含解析
- 邯郸幼儿师范高等专科学校《建筑结构与抗震》2024-2025学年第一学期期末试卷
- 2025年广东省佛山市莘村中学高二上数学期末教学质量检测试题含解析
- TQGCML 2670-2023 四轮电动全地形车
- 苏州市预防接种练习试卷附答案
- 外锁闭和安装装置磨耗量检测指标及方法
- 口腔种植技术管理规范
- 广州中医药大学大学城中医门诊部建设项目建设项目环境影响报告表
- 码头基本建设程序审批流程图
- 医疗机构药事管理-药品配备、购进、储存管理(药事管理与法规课件)
- 合同能源管理合作合同协议
- 重点监管危险化学品名录(2013年完整版)
- 新媒体营销高职PPT完整全套教学课件
- 水利工程质量检测员金属结构继续教育考题-答案(完整版)
评论
0/150
提交评论