版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市师范大学附中2026届高二上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.42.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.3.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面4.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为()A.9 B.8C.7 D.65.若方程表示双曲线,则实数m的取值范围是()A. B.C. D.6.已知,,则的最小值为()A. B.C. D.7.点到直线的距离为2,则的值为()A.0 B.C.0或 D.0或8.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.9.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则10.已知三维数组,,且,则实数()A.-2 B.-9C. D.211.已知数列满足,则()A.32 B.C.1320 D.12.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.14.如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.15.若是直线外一点,为线段的中点,,,则______16.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.18.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.19.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.20.(12分)如图,已知平面,四边形为矩形,四边形为直角梯形,,,,(1)求证:∥平面;(2)求证:平面平面21.(12分)已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.22.(10分)如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.M为线段的中点,P为线段上的动点(1)求证:;(2)当点P满足时,求证:直线平面;(3)是否存在点P,使直线与平面所成角的正弦值为?若存在,试确定P点的位置;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.2、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.3、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D4、A【解析】由双曲线方程求出,再根据点在双曲线的两支之间,结合可求得答案【详解】由,得,则,所以左焦点为,右焦点,则由双曲线的定义得,因为点在双曲线的两支之间,所以,所以,当且仅当三点共线时取等号,所以的最小值为9,故选:A5、A【解析】方程化为圆锥曲线(椭圆与双曲线)标准方程的形式,然后由方程表示双曲线可得不等关系【详解】解:方程可化为,它表示双曲线,则,解得.故选:A6、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.7、C【解析】根据点到直线的距离公式即可得出答案.【详解】解:点到直线的距离为,解得或.故选:C.8、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集9、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.10、D【解析】由空间向量的数量积运算即可求解【详解】∵,,,,,,且,∴,解得故选:D11、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A12、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:14、【解析】由条件可得均为等腰直角三角形,从而,先证明平面,从而,即得到为平面与平面夹角的平面角,从而可求解.【详解】由,则,则在直三棱柱中,平面,又平面,则又,所以平面平面,所以由由条件可得均为等腰直角三角形,则所以,即,由所以平面,又平面所以,即为平面与平面夹角的平面角.在直角中,所以故答案为:15、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.16、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.18、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,,则,,所以,所以.19、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.
(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.
(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,
∵该校高一年级共有学生640人,
∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.
(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,
成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.
若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,
则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),
(C,F),(D,E),(D,F),(E,F)共15种.
如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,
那么这两名学生的数学成绩之差的绝对值一定不大于10.
如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,
那么这两名学生数学成绩之差的绝对值一定大于10.
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.
∴所求概率为P(M)=.【点睛】本题主要考查频率分布直方图的应用以及古典概型概率的求法,还考查了运算求解的能力,属于中档题.20、(1)证明见解析(2)证明见解析【解析】(1)根据线面平行的判定,证明即可;(2)过C作,垂足为M,根据勾股定理证明,再根据线面垂直的性质与判定证明平面BCE即可【小问1详解】证明:因为四边形ABEF为矩形,所以,又平面BCE,平面BCE,所以平面BCE【小问2详解】过C作,垂足为M,则四边形ADCM为矩形因为,,所以,,,,所以,所以因为平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE21、(1)(2)【解析】(1)根据命题p为真命题,可得,解之即可得解;(2)若p是q的充分不必要条件,则,列出不等式组,解之即可得出答案.【小问1详解】解:命题p:关于x的方程至多有一个实数解,∴,解得,∴实数a的取值范围是;【小问2详解】解:命题,∵p是q的充分不必要条件,∴,∴,且两式等号不能同时取得,解得,∴实数m的取值范围是.22、(1)见解析(2)见解析(3)存在点P,【解析】(1)建立空间坐标系求两直线的方向向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年郴州辅警招聘考试真题及答案详解(夺冠)
- 2024年固原辅警招聘考试真题及答案详解参考
- 2024年孝感辅警协警招聘考试备考题库含答案详解(a卷)
- 黑龙江省双鸭山市尖山区一中2025-2026学年化学高二第一学期期末质量检测模拟试题含解析
- 沈阳北软信息职业技术学院《网络与新媒体实务》2024-2025学年第一学期期末试卷
- 湖北省省实验学校、武汉一中等六校2025-2026学年物理高二第一学期期末学业质量监测模拟试题含解析
- 辽宁税务高等专科学校《建设项目评估A》2024-2025学年第一学期期末试卷
- 湖北省武汉市部分学校2026届高一生物第一学期期末学业质量监测试题含解析
- 湖南省衡阳市衡阳县第四中学2026届生物高二第一学期期末复习检测模拟试题含解析
- 山东理工职业学院《项目实践(二)》2024-2025学年第一学期期末试卷
- 杭州地铁笔试题目及答案
- 香水品牌IP联名项目分析方案
- 2025年中国2,6-萘二甲酸二甲酯行业市场分析及投资价值评估前景预测报告
- 艾滋病隐私保护课件
- 多项目协同管理策略与计划工具应用
- 承运商安全培训课件
- 椎基底动脉综合征护理查房
- 教育信息化0下教学工具与翻转课堂模式的结合与应用报告
- 2025年行业政策法规动态分析
- 中小学教师中高级职称答辩备考试题及答案
- 2025年互联网+护理服务制度考核试题及答案
评论
0/150
提交评论