版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年湖南省邵阳市邵阳县高二上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为2.已知等比数列{an}中,,,则()A. B.1C. D.43.已知圆的方程为,则圆心的坐标为()A. B.C. D.4.若则()A.−2 B.−1C.1 D.25.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.6.直线恒过定点()A. B.C. D.7.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.8.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值9.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.14410.已知集合A=()A. B.C.或 D.11.圆的圆心为()A. B.C. D.12.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.14.若正数x、y满足,则的最小值等于________.15.圆的圆心坐标为___________;半径为___________.16.若点为圆的弦的中点,则弦所在直线方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,侧面是边长为4的正三角形,且与底面垂直,底面是菱形,且,为的中点(1)求证:;(2)求点到平面的距离18.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和19.(12分)已知(1)若函数在上有极值,求实数a的取值范围;(2)已知方程有两个不等实根,证明:(注:是自然对数的底数)20.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.21.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.22.(10分)为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D2、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D3、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.4、B【解析】分子分母同除以,化弦为切,代入即得结果.【详解】由题意,分子分母同除以,可得.故选:B.5、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题6、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A7、C【解析】依题意,直线与直线互相垂直,,,故选8、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B9、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A10、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.11、D【解析】由圆的标准方程求解.【详解】圆的圆心为,故选:D12、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:14、9【解析】把要求的式子变形为,利用基本不等式即可得结果.【详解】因为,所以,当且仅当时取等号,故答案为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;16、【解析】因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.考点:1、两直线垂直斜率的关系;2、点斜式求直线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)取的中点,连接,,,先证明平面,再由平面得,(2)等体积法求解.根据题目条件,先证明为三棱锥的高,再求出以为顶点,为底面的三棱锥的体积和以为顶点,为底面的三棱锥的体积,根据,求点到平面的距离.【详解】(1)证明:如图,取的中点,连接,,依题意可知,,均为正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即为三棱锥的高由题意得,∵为的中点,∴在中,,∴,,∴在中,边上的高,∴的面积的面积点到平面的距离即点到平面的距离设点到平面的距离为,由,得,即,解得,即点到平面的距离为18、(1);(2)【解析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又,解得或(舍去),所以.,又,,,;【小问2详解】,.19、(1)(2)证明见解析.【解析】(1)利用导数判断出在上单增,在上单减,在处取得唯一的极值,列不等式组,即可求出实数a的取值范围;(2)记函数,把证明,转化为只需证明,用分析法证明即可.【小问1详解】,定义域为,.令,解得:;令,解得:所以在上单增,在上单减,在处取得唯一的极值.要使函数在上有极值,只需,解得:,即实数a的取值范围为.【小问2详解】记函数.则函数有两个不等实根.因为,,两式相减得,,两式相加得,.因为,所以要证,只需证明,只需证明,只需证明,.证.设,只需证明.记,则,所以在上2单增,所以,所以,即,所以.即证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数证明不等式20、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为21、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.22、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】频率分布直方图以面积的形式反映数据落在各小组内的频率大小,所以计算面积之比即为所求小组的频率.可用此方法计算(1),(2),由公式直接计算可得(1)中样本容量;根据(2)问中的达标率,可计算不达标率,从而求出不达标人数,可得(3);单独计算第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年通辽辅警招聘考试题库及答案详解(新)
- 2023年衢州辅警招聘考试真题及答案详解(全优)
- 2023年黄南州辅警协警招聘考试备考题库及答案详解(网校专用)
- 2023年通化辅警招聘考试题库附答案详解(典型题)
- 2023年西双版纳州辅警招聘考试题库附答案详解(模拟题)
- 2023年赣州辅警招聘考试题库及答案详解(名校卷)
- 2023年铜陵辅警招聘考试题库含答案详解(a卷)
- 2023年玉溪辅警协警招聘考试真题及答案详解(考点梳理)
- 2023年白银辅警招聘考试题库及答案详解(新)
- 2024年上海辅警协警招聘考试备考题库附答案详解(培优)
- 2024年版-生产作业指导书SOP模板
- OCT技术在神经介入手术中的应用
- DL-T5508-2015燃气分布式供能站设计规范
- 爆炸品、剧毒化学品道路运输装卸管理人员从业资格考试题库
- JJG(交通) 168-2020 水位计检定规程
- 小班数学活动《找相同》课件
- 创伤早期评估
- 《面包加工工艺》课件
- 材料科学基础 课件 第十章 固态相变的应用
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 闲置资产盘活利用方案
评论
0/150
提交评论