版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Statisticsfor
BusinessandEconomics(14e)
MetricVersionAnderson,Sweeney,Williams,Camm,Cochran,Fry,Ohlmann©2020CengageLearning1©2020Cengage.Maynotbescanned,copiedorduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart,exceptforuseaspermittedinalicensedistributedwithacertainproductorserviceorotherwiseonapassword-protectedwebsiteorschool-approvedlearningmanagementsystemforclassroomuse.Chapter11-InferencesAboutPopulationVariances11.1-InferencesAboutaPopulationVariance11.2-InferencesAboutTwoPopulationsVariances2InferencesAboutaPopulationVarianceAvariancecanprovideimportantdecision-makinginformation.Considertheproductionprocessoffillingcontainerswithaliquiddetergentproduct.Themeanfillingweightisimportant,butalsoisthevarianceofthefillingweights.Byselectingasampleofcontainers,wecancomputeasamplevariancefortheamountofdetergentplacedinacontainer.Ifthesamplevarianceisexcessive,overfillingandunderfillingmaybeoccurringeventhoughthemeaniscorrect.3Chi-SquareDistribution(1of2)Thechi-squaredistributionisbasedonsamplingfromanormalpopulation.Wecanusethechi-squaredistributiontodevelopintervalestimatesandconducthypothesistestsaboutapopulationvariance.4
5Chi-SquareDistribution(2of2)6IntervalEstimationofσ2(1of8)7IntervalEstimationofσ2(2of8)Takingthesquarerootoftheupperandlowerlimitsofthevarianceintervalprovidestheconfidenceintervalforthepopulationstandarddeviation.8IntervalEstimationofσ2(3of8)
Example:Buyer’sDigest(A) Buyer’sDigestratesthermostatsmanufacturedforhometemperaturecontrol.Inarecenttest,10thermostatsmanufacturedbyThermoRitewereselectedandplacedinatestroomthatwasmaintainedatatemperatureof68oF.Wewillusethe10readingsbelowtodevelopa95%confidenceintervalestimateofthepopulationvariance.Thermostat12345678910Temperature67.467.868.269.369.567.068.168.667.967.29IntervalEstimationofσ2(4of8)SelectedValuesfromtheChi-SquareDistributionTableForn–1=10–1=9dfandα=0.05DegreesofFreedom.99AreainUpperTail.975AreainUpperTail.95AreainUpperTail.90AreainUpperTail.10AreainUpperTail.05AreainUpperTail.025AreainUpperTail.01AreainUpperTail50.5540.8311.1451.6109.23611.07012.83215.08660.8721.2371.6352.20410.64512.59214.44916.81271.2391.6902.1672.83312.01714.06716.01318.47581.6472.1802.7333.49013.36215.50717.53520.09092.0882.7003.3254.16814.68416.91919.02321.666102.5583.2473.9404.86515.98718.30720.48323.20910IntervalEstimationofσ2(5of8)Forn–1=10–1=9dfandα=0.0511IntervalEstimationofσ2(6of8)Forn–1=10–1=9dfandα=0.05DegreesofFreedom.99AreainUpperTail.975AreainUpperTail.95AreainUpperTail.90AreainUpperTail.10AreainUpperTail.05AreainUpperTail.025AreainUpperTail.01AreainUpperTail50.5540.8311.1451.6109.23611.07012.83215.08660.8721.2371.6352.20410.64512.59214.44916.81271.2391.6902.1672.83312.01714.06716.01318.47581.6472.1802.7333.49013.36215.50717.53520.09092.0882.7003.3254.16814.68416.91919.02321.666102.5583.2473.9404.86515.98718.30720.48323.20912IntervalEstimationofσ2(7of8)n–1=10–1=9degreesoffreedomandα=0.0513IntervalEstimationofσ2(8of8)Thesamplevariances2providesapointestimateofσ2.A95%confidenceintervalforthepopulationvarianceisgivenby:14HypothesisTestingAboutaPopulationVariance(1of8)15HypothesisTestingAboutaPopulationVariance(2of8)Foreachtypeoftest,
16HypothesisTestingAboutaPopulationVariance(3of8)Example:Buyer’sDigest(B)RecallthatBuyer’sDigestisratingThermoRitethermostats.Buyer’sDigestgivesan“acceptable”ratingtoathermostatwithatemperaturevarianceof0.5orless.Usingthe10readings,wewillconductahypothesistest(witha=0.10)todeterminewhethertheThermoRitethermostat’stemperaturevarianceis“acceptable.”Thermostat12345678910Temperature67.467.868.269.369.567.068.168.667.967.217HypothesisTestingAboutaPopulationVariance(4of8)18HypothesisTestingAboutaPopulationVariance(5of8)Forn–1=10–1=9dfanda=0.10SelectedValuesfromtheChi-SquareDistributionTableDegreesofFreedom.99AreainUpperTail.975AreainUpperTail.95AreainUpperTail.90AreainUpperTail.10AreainUpperTail.05AreainUpperTail.025AreainUpperTail.01AreainUpperTail50.5540.8311.1451.6109.23611.07012.83215.08660.8721.2371.6352.20410.64512.59214.44916.81271.2391.6902.1672.83312.01714.06716.01318.47581.6472.1802.7333.49013.36215.50717.53520.09092.0882.7003.3254.16814.68416.91919.02321.666102.5583.2473.9404.86515.98718.30720.48323.20919HypothesisTestingAboutaPopulationVariance(6of8)RejectionRegion20HypothesisTestingAboutaPopulationVariance(7of8)21HypothesisTestingAboutaPopulationVariance(8of8)Usingthep-Value22InferencesAboutTwoPopulationVariancesWemaywanttocomparethevariancesin:productqualityresultingfromtwodifferentproductionprocesses,temperaturesfortwoheatingdevices,orassemblytimesfortwoassemblymethodsWeusedatacollectedfromtwoindependentrandomsamples,onefrompopulation1andanotherfrompopulation2.Thetwosamplevarianceswillbethebasisformakinginferencesaboutthetwopopulationvariances.23HypothesisTestingAboutaPopulationVariance(1of2)24HypothesisTestingAboutaPopulationVariance(2of2)Foreachtypeoftest,25HypothesisTestingAbouttheVariancesofTwoPopulations(1of5)Example:Buyer’sDigest(C)Buyer’sDigesthasconductedthesametest,asdescribedearlier,onanother10thermostats,thistimemanufacturedbyTempKing.Wewillconductahypothesistestwithα
=0.10toseeifthevariancesareequalforThermoRite’sthermostatsandTempKing’sthermostats.ThermoRiteSampleThermostat12345678910Temperature67.467.868.269.369.567.068.168.667.967.2TempKingSampleThermostat12345678910Temperature67.766.469.270.169.569.768.166.667.367.526HypothesisTestingAbouttheVariancesofTwoPopulations(2of5)HypothesesRejectionRule27HypothesisTestingAbouttheVariancesofTwoPopulations(3of5)
DenominatorDegreesofFreedomAreainUpperTailNumeratorDegreesofFreedomat7NumeratorDegreesofFreedomat8NumeratorDegreesofFreedomat9NumeratorDegreesofFreedomat10NumeratorDegreesofFreedomat158.102.622.592.562.542.468.053.503.443.393.353.228.0254.534.434.364.304.108.016.186.035.915.815.529.102.512.472.442.422.349.053.293.233.183.143.019.0254.204.104.033.963.779.015.615.475.355.264.9628HypothesisTestingAbouttheVariancesofTwoPopulations(4of5)TestStatistic:TempKing’ssamplevarianceis1.768.ThermoRite’ssamplevarianceis0.7.Conclusion:29HypothesisTestingAbouttheVariancesofTwoPopulations(5of5)Determiningandusingthep-ValueAreainUpperTail.10.05.025.01FValueatDegreesoffreedomsubscript1baselineequals9anddegreesoffreedomsubscript2baselineequals92.443.184.035.35
30Statisticsfor
BusinessandEconomics(14e)
MetricVersionAnderson,Sweeney,Williams,Camm,Cochran,Fry,Ohlmann©2020CengageLearning31©2020Cengage.Maynotbescanned,copiedorduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart,exceptforuseaspermittedinalicensedistributedwithacertainproductorserviceorotherwiseonapassword-protectedwebsiteorschool-approvedlearningmanagementsystemforclassroomuse.Chapter12-ComparingMultipleProportions,TestofIndependenceandGoodnessofFit12.1-TestingtheEqualityofPopulationProportionsforThreeorMorePopulations12.2-TestofIndependence12.3-GoodnessofFitTest32TestsofGoodnessofFit,Independence,andMultipleProportionsInthischapterweintroducethreeadditionalhypothesis-testingprocedures.Theteststatisticandthedistributionusedarebasedonthechi-square(χ2)distribution.Inallcases,thedataarecategorical.33TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(1of12)Hypotheses:34TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(2of12)
35TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(3of12)Example:FingerLakesHomesFingerLakesHomesmanufacturesthreemodelsofprefabricatedhomes:atwo-storycolonial,alogcabin,andanA-frame.Tohelpinproduct-lineplanning,managementwouldliketocomparethecustomersatisfactionwiththethreehomestyles.p1=proportionlikelytorepurchaseaColonialforthepopulationofColonialownersp2=proportionlikelytorepurchaseaLogCabinforthepopulationofLogCabinownersp3=proportionlikelytorepurchaseanA-FrameforthepopulationofA-Frameowners36TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(4of12)Webeginbytakingasampleofownersfromeachofthethreepopulations.Eachsamplecontainscategoricaldataindicatingwhethertherespondentsarelikelyornotlikelytorepurchasethehome.Herearetheobservedfrequencies(sampleresults)LikelytorepurchaseHomeownerColonialHomeOwnerLogHomeOwnerA-frameTotalYes978380260No381844100Total13510112436037TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(5of12)Next,wedeterminetheexpectedfrequenciesundertheassumptionH0iscorrect.ExpectedfrequenciesundertheassumptionH0istruearecalculatedusingthisformula:Ifasignificantdifferenceexistsbetweentheobservedandexpectedfrequencies,H0canberejected.38TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(6of12)Theexpectedfrequenciesare:LikelytorepurchaseHomeOwnerColonialHomeOwnerLogHomeOwnerA-frameTotalYes97.5072.9489.56260No37.5028.0634.44100Total13510112436039TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(7of12)Next,computethevalueofthechi-squareteststatistic.
40TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(8of12)ComputationoftheChi-SquareTestStatisticLikelytoRepurchaseHomeOwnerObs.Freq.offsubscriptijbaselineExp.Freq.ofesubscriptijbaselineDiff.ofopenparenthesisfsubscriptijbaselineminusesubscriptijbaselineCloseparenthesisSqd.Diff.ofopenparenthesisfsubscriptijbaselineminusesubscriptijbaselineCloseparenthesissquaredSqd.Diff/Exp.Freq.of(fij–eij)2/eijStartfraction,openparenthesisfsubscriptijbaselineminusesubscriptijbaselineCloseparenthesissquared,overesubscriptijbaselineYes
Colonial9797.50-0.500.25000.0026YesLogCab.8372.9410.06101.11421.3862YesA-frame8089.56-9.5691.30861.0196NoColonial3837.500.500.25000.00687NoLogCab.1828.06-10.06101.11423.6041NoA-frame4434.449.5691.30862.6509EmptycellTotal360360Emptycellxsquared=8.670041TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(9of12)RejectionRule:42TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(10of12)RejectionRule(usinga=0.05)43TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(11of12)Conclusionusingthep-valueapproach:Areainuppertail.10.05.025.01.005Chisquared(df=2)4.6055.9917.3789.21010.59744TestingtheEqualityofPopulationProportionsforThreeorMorePopulations(12of12)Wehaveconcludedthatthepopulationproportionsforthethreepopulationsofhomeownersarenotequal.Toidentifywherethedifferencesbetweenpopulationproportionsexist,wewillrelyonamultiplecomparisonsprocedure.45MultipleComparisonsProcedure(1of4)Webeginbycomputingthethreesampleproportions.WewilluseamultiplecomparisonprocedureknownastheMarascuiloprocedure.46MultipleComparisonsProcedure(2of4)MarascuiloProcedureWecomputetheabsolutevalueofthepairwisedifferencebetweensampleproportions.47MultipleComparisonsProcedure(3of4)CriticalValuesfortheMarascuiloPairwiseComparisonForeachpairwisecomparison,computeacriticalvalueasfollows:48MultipleComparisonsProcedure(4of4)PairwiseComparisonTestsPairwiseComparisonCVijColonialvs.LogCabin.1033.1329NotsignificantColonialvs.A-Frame.0733.1415NotSignificantLogCabinvs.A-Frame.1766.1405Significant49TestofIndependence(1of7)
50TestofIndependence(2of7)Computetheteststatistic.Determinetherejectionrule.51TestofIndependence(3of7)Example:FingerLakesHomes(B)EachhomesoldbyFingerLakesHomescanbeclassifiedaccordingtopriceandtostyle.FingerLakes’managerwouldliketodetermineifthepriceofthehomeandthestyleofthehomeareindependentvariables.Thenumberofhomessoldforeachmodelandpriceforthepasttwoyearsisshownbelow.Forconvenience,thepriceofthehomeislistedaseitherlessthan$200,000orgreaterthanorequalto$200,000.PriceColonialLogSplit-LevelA-Frame<$200,0001861912≥$200,000121416352TestofIndependence(4of7)HypothesesH0:PriceofthehomeisindependentofthestyleofthehomethatispurchasedHa:PriceofthehomeisnotindependentofthestyleofthehomethatispurchasedExpectedFrequenciesPriceColonialLogSplit-LevelA-frameTotal<$200K186191255≥$200K121416345Total3020351510053TestofIndependence(5of7)RejectionRuleTestStatistic54TestofIndependence(6of7)Conclusionusingthep-valueapproachAreainuppertail.10.05.025.01.005χ2value(df=3)6.2517.8159.34811.34512.83855TestofIndependence(7of7)ConclusionusingthecriticalvalueapproachWerejectatthe0.05levelofsignificancetheassumptionthatthepriceofthehomeisindependentofthestyleofhomethatispurchased.56GoodnessofFitTest:MultinomialProbabilityDistribution(1of3)
57GoodnessofFitTest:MultinomialProbabilityDistribution(2of3)Computethevalueofthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国计量泵配件行业市场前景预测及投资价值评估分析报告
- 2025江西景德镇市生态环境系统事业单位招聘工作人员8人考试笔试备考试题及答案解析
- 2026贵州松桃苗族自治县“优师计划”毕业生招聘教师19人笔试考试备考试题及答案解析
- 2025重庆铜梁区教育委员会公益性岗位招聘考试笔试参考题库附答案解析
- (人教2024版)英语一年级上册Unit 1全单元课时练习(含答案)
- 宫颈糜烂术后护理指导
- 普外科甲状腺手术术前准备指南
- 【A4原卷】2025年六年级数学上册期末素养测评(三)
- 2026年浙江同济科技职业学院单招职业适应性考试题库新版
- 2026年湖北交通职业技术学院单招职业倾向性测试必刷测试卷及答案1套
- 成品化粪池施工方案
- 藏毛窦的治疗及护理
- 农村集体经济组织内部控制制度
- 药品经营质量管理规范
- 通信工程勘察设计管理办法
- 婴幼儿发展引导员(育婴员)职业技能竞赛理论考试题库(含答案)
- 公安涉警舆情课件
- 品三国论领导艺术智慧树知到期末考试答案2024年
- 2024年安徽省电力行业无人机巡检技能竞赛考试参考题库(含答案)
- 渭南好运旺塑业有限公司农用灌溉设施生产项目环境影响报告
- 左卡尼汀课件
评论
0/150
提交评论