甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题含解析_第1页
甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题含解析_第2页
甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题含解析_第3页
甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题含解析_第4页
甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省会宁县第五中学2025年高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为A.π B.πC.4π D.π2.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.3.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为4.函数在区间的图象大致是()A. B.C. D.5.若幂函数的图象经过点,则的值为()A. B.C. D.6.已知函数在内是减函数,则的取值范围是A. B.C. D.7.为了得到函数的图象,只需将的图象上的所有点A.横坐标伸长2倍,再向上平移1个单位长度B.横坐标缩短倍,再向上平移1个单位长度C.横坐标伸长2倍,再向下平移1个单位长度D.横坐标缩短倍,再向下平移1个单位长度8.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增9.在内,不等式解集是()A. B.C. D.10.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,”的否定是___________.12.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.13.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad14.命题“存在x∈R,使得x2+2x+5=0”的否定是15.在中,若,则的形状一定是___________三角形.16.已知集合,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量满足:,|.(1)若,求的值;(2)设向量的夹角为,若存在,使得,求的取值范围.18.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.19.已知函数的部分图像如图所示(1)求函数f(x)的解析式,并写出其单调递增区间;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若,且a、b是方程的两个实数根,试求△ABC的周长及其外接圆的面积20.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?21.已知直线l与x轴和y轴的正半轴分别交于A,B两点,O为坐标原点,且△AOB的面积为6(Ⅰ)若直线l过点(3,1),求原点O关于直线l对称点的坐标;(Ⅱ)是否存在直线l同时满足点(1,1)到直线l的距离为1,若存在,求出直线l的方程;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】球半径,所以球的体积为,选B.2、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D3、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.4、C【解析】判断函数非奇非偶函数,排除选项A、B,在计算时的函数值可排除选项D,进而可得正确选项.【详解】因为,且,所以既不是奇函数也不是偶函数,排除选项A、B,因为,排除选项D,故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5、C【解析】由已知可得,即可求得的值.【详解】由已知可得,解得.故选:C.6、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.7、B【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】将的图象上的所有点的横坐标缩短倍(纵坐标不变),可得y=3sin2x的图象;再向上平行移动个单位长度,可得函数的图象,故选B【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题8、B【解析】根据给定的对应值表,逐一分析各选项即可判断作答.【详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B9、C【解析】根据正弦函数的图象和性质,即可得到结论【详解】解:在[0,2π]内,若sinx,则x,即不等式的解集为(,),故选:C【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题10、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”12、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法13、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:14、对任何x∈R,都有x2+2x+5≠0【解析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠015、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.16、【解析】根据并集的定义可得答案.【详解】,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)用向量数量积运算法则展开;(2)两边同时平方,转化为关于的一元二次方程有解.【详解】(1)若,则,又因为,|,所以,所以;(2)若,则,又因为,,所以即,所以,解得或,所以.【点睛】本题关键:“向量模的关系”转化为“关于的一元二次方程有解”,,再转化为的不等式,属于中档题.18、(1)答案见解析;(2).【解析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即为,解得且;当,即,又,即时,方程的两根、,∴解得或,综上可得当时,定义域为,当时,定义域为且,当时,定义域为或;【小问2详解】对任意恒有,即对恒成立,∴,而,在上是减函数,∴,所以实数的取值范围为.19、(1),(2),【解析】(1)根据图像可得及函数的周期,从而求得,然后利用待定系数法即可求得,再根据正弦函数的单调性结合整体思想即可求出函数的增区间;(2)根据可求得角,利用韦达定理可得,再利用余弦定理可求得边,再利用正弦定理可得外接圆的半径,即可得出答案.【小问1详解】解:由函数图象知,又由函数图象知,所以,得,∴,因为图象过点(0,1),所以,所以,又因为,所以,所以函数f(x)的解析式为,令,则,所以单调递增区间为:;【小问2详解】,结合,则,所以,又由题设,得,所以,所以,∴三角形ABC的周长,∵外接圆的直径,∴,∴外接圆的面积.20、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短21、(I)(,)(Ⅱ)直线l的方程为4x+3y-12=0,或3x+4y-12=0【解析】(I)设A(a,0),B(0,b),则ab=6,即ab=12,(a,b>0).直线l的方程为:,直线l过点(3,1),代入可得.与ab=12联立解得:a,b.即可得出直线l的方程.设原点O关于直线l对称点的坐标为(m,n),利用中点坐标公式、相互垂直的直线斜率之间的关系即可得出(Ⅱ)假设存在直线l同时满足点(1,1)到直线l的距离为1,可得,与ab=12联立解得a,b即可得出【详解】(I)设A(a,0),B(0,b),则ab=6,即ab=12,(a,b>0)直线l的方程为:=1,∵直线l过点(3,1),∴=1与ab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论