上海市曹阳二中2025年数学高二上期末达标测试试题含解析_第1页
上海市曹阳二中2025年数学高二上期末达标测试试题含解析_第2页
上海市曹阳二中2025年数学高二上期末达标测试试题含解析_第3页
上海市曹阳二中2025年数学高二上期末达标测试试题含解析_第4页
上海市曹阳二中2025年数学高二上期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市曹阳二中2025年数学高二上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足:,,则()A. B.C. D.2.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.3.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.4.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C D.5.函数的极大值点为()A. B.C. D.不存在6.若正方体ABCD­A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.7.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A. B.C. D.8.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.99.若,,,则a,b,c与1的大小关系是()A. B.C. D.10.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之栗五斗羊主曰:“我羊食半马”马主曰:“我马食半牛”今欲哀偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗的主人要求赔偿5斗栗羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还栗a升,b升,c升,1斗为10升,则下列判断正确的是A.a,b,c依次成公比为2的等比数列,且B.a,b,c依次成公比为2的等比数列,且C.a,b,c依次成公比为的等比数列,且D.a,b,c依次成公比为的等比数列,且11.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分12.设,若直线与直线平行,则的值为()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.美好人生路车站早上有6:40,6:50两班开往A校的公交车,若李华同学在早上6:35至6:50之间随机到达该车站,乘开往A校的公交车,公交车准时发车,则他等车时间不超过5分钟的概率为______14.若直线过圆的圆心,则实数a的值为_________.15.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________16.已知圆柱轴截面是边长为4的正方形,则圆柱的侧面积为______________

.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.18.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,19.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长20.(12分)已如空间直角标系中,点都在平面内,求实数y的值21.(12分)已知圆的圆心在直线上,且圆与轴相切于点(1)求圆的标准方程;(2)若直线与圆相交于,两点,求的面积22.(10分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A2、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.3、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B4、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数在上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.5、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B6、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.7、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.8、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.9、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.10、D【解析】由条件知,,依次成公比为的等比数列,三者之和为50升,根据等比数列的前n项和,即故答案为D.11、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.12、C【解析】根据直线的一般式判断平行的条件进行计算.【详解】时,容易验证两直线不平行,当时,根据两直线平行的条件可知:,解得或.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,进而根据几何概型求概率的方法求得答案.【详解】由题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,则所求概率.故答案为:.14、【解析】根据圆的求得圆心坐标,将圆心坐标代入直线方程,即可求解.【详解】由题意,圆,可得圆心为,因为圆心为在直线上,可得,解得.故答案:.15、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点16、【解析】由圆柱轴截面的性质知:圆柱体的高为,底面半径为,根据圆柱体的侧面积公式,即可求其侧面积.【详解】由圆柱的轴截面是边长为4的正方形,∴圆柱体的高为,底面半径为,∴圆柱的侧面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.18、(1)(2)46800【解析】(1)第一步分别算第x,y的平均值,第二步利用,即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果.【小问1详解】,,,因为,所以,所以【小问2详解】预测该地区2022年抽样1000汽车调查中新能源汽车数,当时,,该地区2022年共有30万辆汽车,所以新能源汽车.19、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.【小问1详解】将化为标准方程得:因为圆C的半径为1,所以,得【小问2详解】由(1)知圆C的圆心为,半径为1设圆心C到直线l的距离为d,则,所以直线l与圆C相交,设其交点为A,B,则,即20、【解析】方法一:根据平面向量基本定理即可解出;方法二:先求出平面的一个法向量,再根据即可求出【详解】方法一:,由题意知A,B,C,P四点共面,则存在实数,满足∵,∴∴,而,∴方法二:,设平面的一个法向量为,则,∴取,则,∵,∴,解得21、(1)(2)4【解析】(1)由已知设圆心,再由相切求圆半径从而得解.(2)求弦长,再求点到直线的距离,进而可得解.【小问1详解】因为圆心在直线上,所以设圆心,又圆与轴相切于点,所以,即圆与轴相切,则圆的半径,于是圆的方程为【小问2详解】圆心到直线的距离,则,又到直线的距离为,所以.22、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论