限距螺杆.png
限距螺杆.png

小金橘自动分级机机械设计-水果分选机设计【含11张CAD图纸和文档资料】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:96390813    类型:共享资源    大小:2.99MB    格式:ZIP    上传时间:2020-09-23 上传人:好资料QQ****51605 IP属地:江苏
100
积分
关 键 词:
含11张CAD图纸和文档资料 金橘 自动 分级 机械设计 水果 分选 设计 11 CAD 图纸 文档 资料
资源描述:

喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=====================

【QQ:1304139763 可咨询交流】

内容简介:
塔里木大学毕业论文(设计)任务书学院机械电器化工程班级农机13-班学生姓名康鹏程学号8031209104课题名称一种小型水果自动分级机机械部分的设计起止时间2012年10月29日2013年5月18日(周)指导教师肖爱玲职称副教授课题内容:在对水果预处理时,首先要对水果进行分级处理。分级的要求不仅要较为精确的分出果品的大小,还要使果品不受损伤,保证果品的质量。本设计主要针对小型水果设计出自动分级机机械部分。主要包括:水果分级机构、动力传输机构、水果输送机构。拟定工作进度(以周为单位):第1周第2周 通过查找文献资料,了解小型水果的品种及特性。水果自动分级机械发展的国内外现状。第3周第5周 设计小型水果自动分级机机械部分的总体方案。第6周第9周 针对小型水果设计出自动分级机机械部分:水果分级机构、动力传输机构、水果输送机构进行具体设计。第10周第12周 撰写设计说明书,对部分问题修改、调整。第13周第14周 整理资料准备答辩。主要参考文献:1 吴德光.国外水果分级技术.J. 云南农业大学学报.1992.6 7(2)110-114 2 邓良平. 水果产后商品化处理设备现状与发展方向J. 粮油加工与食品机2000,7(6).3 吴德光. 国外水果分级技术J. 云南农业大学学报, 1992,6 (7). 4 白 菲,孟超英. 水果自动分级技术的现状与发展J. 食品科学, 2005,4 (26).5 张 聪,罗建生,陈朝旭,等. 荔枝分级包装设备的研究开发J. 食品工业科技,2003,3(3). 6 张志恒,胡文兰. 我国居民水果消费的现状前景及其对策J. 中国果品研究1996,4(4)7 张复宏. 中国水果的出口结构分析及对策J. 农业科技管理, 2009,2(8).8 张方明, 应义斌. 水果分级机器人关键技术的研究和发展J. 机器人技术与应用,2004,2(1).9 李庆中, 汪懋华. 基于分形特征的水果缺陷快速识别方法J. 中国图像图形学报,2000,5(2). 10 籍保平, 吴文才. 计算机视觉苹果分级系统J. 农业机械学报, 2000,31(6).11 何东健, 杨 青, 薛少平,等. 果实表面颜色计算机视觉分级技术研究J. 农业工程学报,1998,14(3).12 杨可桢,程光蕴,李仲生. 机械设计基础M.第5版.北京:高等教育出版社,2006.5 13 单辉祖. 材料力学M.第3版. 北京:高等教育出版社,2009.214 裘建新.机械原理课程设计指导书M.第 5版.北京:高等教育出版社,2008. 15 陆凤仪. 机械原理课程设计M. 北京:机械工业出版社,2002. 任务下达人(签字) 年 月 日任务接受人意见任务接受人签名 年 月 日注:1、此任务书由指导教师填写,任务下达人为指导教师。2、此任务书须在学生毕业实践环节开始前一周下达给学生本人。3、此任务书一式三份,一份留学院存档,一份学生本人留存,一份指导教师留存。编号: 外文翻译(原文)题 目: 水果分选机分选 部分设计 院 (系): 专 业: 学生姓名: 学 号: 姓 名: 职 称: 题目类型:理论研究 实验研究 工程设计 工程技术研究 软件开发 对java苹果果实损伤最小的分选机器的设计摘要Java苹果水果特性是:有非常吸引力的皮肤,甜而脆肉,对高机械损伤非常敏感。java苹果在泰国生产已经流行于当地和外国市场,几乎全年都是可用的,以优惠的价格出售。水果采后出口驱动的机械化设备,其中至关重要的新型机等机械为java苹果仍然是不可用的。本研究旨在设计、构建、测试和评估一个有效的分级机对于java苹果。设计概念特色有:a) 一个分级参数决定了直径的水果,b) 一个分级机制导致最小伤害。分级机是由送料单元和由两个187 W 220 V 50赫兹电机驱动、齿轮减速器和滑轮组成的一个传送单元。性能测试表明, 带的速度和倾角的大小;带的进给速度和水果取向严重影响着工艺性能于p 0.05。在最佳工艺条件下连续机械分级取决于品种。最佳的工艺性能的显著特征就是污染或错误比为10.8%-16.5%,和一个吞吐量能力为149.7 -195.1Kg/h。此时对水果没有明显的损害。手动分选的导出的java苹果出现一个错误比率为27.9%,伤害比例的13.3%,和一个容量为107.2Kg/h。因此,java苹果分级机可以经营没有增加更多的机械破坏大小的水果。命名 java苹果的直径 ,mm 传送带的发散角 , 传送带的倾斜角度 , java苹果等级1和等级2之间的孔直径 ,mm java苹果等级2和等级3之间的孔直径 ,mm 等级为1的java苹果果实的平均直径 ,mm 等级为2的java苹果果实的平均直径,mm 等级为1的java苹果果实的标准偏差 等级为2的java苹果果实的标准偏差 分选效率 Q 吞吐能力,Kg/h 平均污染错误率 等级i的流率,Kg/h 相关成本等级为i的分数 等级为i的苹果果实的总数 等级j从等级i回收的品种数量 等级g从等级j回收的品种数量 等级i中回收的苹果总数量,Kg 混合之初等级i的分数 从等级i中回收的正确的水果分数 t 进给时间,h 权函数 等级i中回收的总重量 Kg 注入分选系统的总重量,Kg介绍 Java苹果果实流行于泰国和国外因其美丽的皮肤颜色也是甜而脆肉。水果的营养价值极高。在2005年,出口苹果肉来自泰国的爪哇达到高达4460万美元,这使它第三排名后出口水果榴莲和龙眼。采后的行动在新鲜水果、上浆是相当的劳动密集型的。浆纱是必要的,因为大小的水果a)具有较高的价值,如果出售水果吗b) 它吸引买家和c) 它促进包装设计(Jarimopas et al,2007和Peleg,1985)手动浆纱是充满缓慢上浆率,较大的误差和机械损伤。例如,手工上浆的新鲜芒果Jarimopas,Toomsaengtong, & Inprasit,2007和榴莲(Jarimopas,Siriratchataapong,Sukharom,Sihavong, & Goto,1992) 被发现造成偏差率和43%的34。上浆机开发工作与热带水果通常由一个双齿辊破碎机辊齿孔式、带、板仪、和不同带。Jarimopas,Kongwatananon,Rangdang,Yamashita(1988)测试了一个商业橘红色的上浆机,基于多孔输送机机制仪。他们的机器由五孔直径和大小不一的钢瓶的6年级水果的容积为1.5吨h?1和上浆效率可达87.5%。效率高上浆也许是由于non-deformable光圈。虽然商业上可行,喂养必须单层手动控制,这是一种不良的特征。一个小的尺寸的橘子数目长期阻碍了斜面水果钢瓶之间,使经营者有手动移动到下一个旋转圆筒水果继续上浆。这是一个愤怒的原因操作员和它减慢了。扶轮上浆机(GREEFA,Geldermalsen、荷兰),这是发达模型和董事会双齿辊破碎机辊齿皮带,被用来大小芒果(Jarimopas等问题,2007和Jarimopas等问题,2007)。芒果双齿辊破碎机辊齿的3个年级能种类(小、中、大)在一个持续的容量为1026公斤h?1和一个错误,发生率为23%。扶轮Greefa概念也被应用于其他sphere-shaped大小的水果和蔬菜,如番石榴(Jarimopas,Rachanukroa,和陈,2002)。仪器的优点是它的缓解交通工具,例如在轻型卡车。然而,它的性能局限于单层喂食和其特点是不一致的错误由于缝隙。Jarimopas丁晓萍。(1988)开发了一种新型解决分歧的带芒果。分带的是由两个75毫米宽腰带是在一个角度倾斜25以水平表面。这台机器在一个能力分级芒果1100Kg/h效率率为80%。低的倾向需要上浆带芒果旅行前更远校准的直径和血统的水果从通径带构成的主要缺点是这台机器。这导致了一个长的机器,使运输困难。此外,孔径不均匀性是矛盾的,因为上浆带。为frustum-shaped水果,比如梨子和胡萝卜,法勒(1985)建议使用分带进行有效的双齿辊破碎机辊齿的排序。一个适当的上浆机应该快速上浆率的特点,可接受的误差比率微不足道的机械损伤。Mohsenin(1996)表示,机械损伤是副产品的利用农业机械。这是可能的,造成上述机器机械损坏,但是相关的评估报道。Bupata,Jarimopas,和通常(2007)报道,直径的java苹果果实不同比例和水果的重量。javaapplefruit直径的变化各自的尺寸了Sarakan品种,Jarimopas,通常(2007)。基于压缩破裂javaapple皮肤的力量,其皮肤被发现更容易受到损伤,比苹果(Jarimopas等问题,2007和Jarimopas等问题,2007)。磨损和伤害都可能发现苹果联合国,包装java。java苹果产量高价格商业化,并获得知名度在国外市场上可用的几乎所有地方一年到头。水果生产是相当的工作服但短缺和劳动力成本变得至关重要。因此,要求上浆机增加了。一个特定java苹果上浆机是不可用的。因此,本研究旨在设计、开发的一种结构简单、紧凑,崎岖的机械仪工作与非常敏感的水果都是一个挑战。材料和方法设计和运行设计设计理念包含四个标准:一)浆纱参数由直径的java苹果头直径(Dm在图1),b)不得不在曲线斜率上浆机理的损失减少到最低程度,c)上浆机必须提供一种机制能够始终如一地米果直径和统一释放量水果装入接收集装箱相应的大小和d)机器应该简单、结构紧凑、坚固耐用,且可移动。皮带的设计选择了不同,因为(我)浆纱皮带提供两种接触点的直径测量java苹果进展而水果沿腰带。(二)在浆纱带旅行期间同时运动分歧,因此,测量水果前往了皮带腰带在他们的基地(孔)失去接触测量孔的果实;水果降落到接收集装箱相应的大小。(3)java苹果果实的形状。初步跌落试验java苹果果实 15新鲜完整(粒度大小均匀)从150年、200年和250毫米高到一个坚硬的表面缓解由20毫米泡沫橡胶透露水果损坏发生在一个最小的投入高度200毫米。为一个假定的均匀加速运动,这相当于0.2秒下降时间(Meriam,1975)。旅行速度的浆纱带200毫米年代1和联合时间的水果和水果的脱除下降到盘0.5秒,规定一个可行的安排在2000.5 =水果100毫米间隔。上浆机的分带设计为允许3水果同级去沿着带序列(小年级允许4水果)(图2)。三个等级(大、中、小型)是必需的。积极的长度为900毫米和100毫米的额外的空间收果子的反弹(如果有的话)两边,提供一个总长度1100毫米是指明。带的发散角在图1。根据Bupata丁晓萍。(2007年) 等于0.29、0.55、0.34和的javaapple Toonklao品种,分别Tubtimjan和Tongsamsri。倾斜的角度表现为带图1。分带的需要倾向于水平面,因为倾向导致点与运动的过程中每一颗果子不论尺寸大小。因此,每一个水果以它的头直径,应该是太大的水果瀑布和不对称的躺在皮带就运动,因此没头直径测量。如果太小,水果可能呆在篮下的肩膀,直径测量不发生。适当的倾斜角度()因此需要确定。情绪智商。(1)(法勒,1985)提出了估计的直径的分离(X12,X23)之间的java苹果果实相邻的成绩从均值和标准偏差的每一个相邻的品位。X12的价值观和X23由表1给出。 这里, java苹果等级1和等级2之间的孔直径 ,mm 等级为1的java苹果果实的平均直径 ,mm 等级为2的java苹果果实的平均直径,mm 等级为1的java苹果果实的标准偏差 等级为2的java苹果果实的标准偏差表1统计的插孔和角的浆纱腰带。品种 结果最大粒径大小(mm) (mm) (mm) () S M LTK 52.921.57 57.700.89 64.121.37 59.964.16 53.017.30 0.29TM 45.302.93 58.081.53 65.801.36 62.879.40 94.8632.73 0.55TS 51.152.20 58.471.53 63.071.82 65.3310.02 47.3913.29 0.34 显示发达java苹果果实上浆机的单位和分带料浆单位。进料单位,598毫米宽,长1430毫米- 520毫米高,是钢做的。两个25.4毫米直径圆柱轴安装在顶部的框架,便于带的调整。喂料带,Ammeraal型带Flexam EM 10月2日绿色成品(Ammeraal Beltech,Heerhugowaard、荷兰),是100毫米宽,2400毫米长和并行到地板上。喂料装置,推动了0.19 kW 220 V 50赫兹电机、1:20齿轮减速器,一个链和一个滑轮。一个“u”型橡胶地垫是附属于传送带表面80毫米间距部分集装箱水果为均匀半自动水果吃食。上浆机、钢做的和390毫米宽,长1510毫米和765毫米高,表现了一个托盘的钢材收到600厘米宽长1100毫米、80毫米深。接收托盘缓冲与20毫米橡胶泡沫为两个可调分区水果尺寸要求的分离。上浆带偏离和倾向于水平面的在学位。每两种浆纱皮带,Ammeraal类型Nonex EM 8/2蓝色成品100毫米宽长2500毫米。的外表面带内衬有4毫米胶乳泡沫。每一个带被赶在相同的速度下由一个220 V 50赫电机工作在1450转/分钟以减小齿轮以及万向节。锥形布管的端部之间放置喂料带的开始带控制上浆垂直下降的java苹果果实,减速水果掉落在浆纱带从而减少损坏的水果。运动上浆带水果低于水平从而减少垂直滑动。圆锥形布管120毫米长和由纱。它有一个直径100毫米孔径顶部和厚度不超过60毫米的孔直径在底部,麦克喂食。 运行 Java苹果水果手动输入u型橡胶连续饲喂带由操作员以这样的方式结束的水果是杆平行于带运动。这就提供了一个统一的自动送料的水果浆纱带。然而,喂料机容量限制了使用者的能力。水果离开喂食运输带和垂直进入了圆锥形布管(图4),但圆锥形布管不仅把水果垂直。 进行上浆带的爪哇苹果果实过去2接触点。向前运动,分歧的浆纱带和单果重下降导致水果对低端或皮带的光圈。因此,两个接触点带面尺寸和水果不断。这种现象的发生,会导致皮肤擦到水果和可能引起磨损。当水果达到的孔,这是防止表面的缓冲的浆纱腰带。 性能测试 样品制备测定的最佳工作条件包括随机选择newly-harvested、统一和损害自由java苹果果实。每种大小三十样品水果(三个大小:小、中、大)各品种的(三品种:Toonklao Tubtimjan和Tongsamsri,收集整理了。最大的水果头直径、长度和重量测量每个样本的游标制动和电子平衡(G 6000年,生产的生产公司,Goettingen、德国)。测定的最佳倾角与速度的角度浆带方差分析(一个样品的java苹果果实为原料,制备了如上所述。测试条件包括两个控制因素;倾向的角度的浆纱带(3个等级:75、80和85)和浆纱带速度(3个等级:10欧分,20欧分和30米分钟?1)。均匀喂java苹果样品,上浆带是在15米管制?1分钟。进行了五次重复,为一个结合的控制因素。上浆机的性能进行了评价与Eqs。(2)、(3)、(4)。=Q=这里,=+=同时在这里, 上浆效率 Q 吞吐能力,Kg/h 平均污染里错误率 等级i的流率,Kg/h 相关成本等级为i的分数 等级为i的苹果果实的总数 等级j从等级i回收的品种数量 等级g从等级j回收的品种数量 等级i中回收的苹果总数量,Kg 混合之初等级i的分数 从等级i中回收的正确的水果分数 t 进给时间,h 权函数 等级i中回收的总重量 Kg 注入上浆系统的总重量,Kg确定最佳水果取向和相关的机械损伤java的形状苹果果实(图5)确定了维度的最大值和最小值的水果的头。这两个参数都有显著性差异(Bupata et al,2007)。决定的条件和倾向速度,水果形状影响水果定位试验条件对于样品放置在喂养带(2个可能:随机位置和水平最大横径位置)。每一个水果放在样品干转向上浆单位。继90年爪哇苹果样品测试各种尺寸的随机收集并存储与之在15C 6小时(Jarimopas et al ,2007和Jarimopas et al,2007)。java苹果的损伤力学特性,机器尺寸,既与无锥形布管,以及控制套水果(这是不处理后经本机)使用Eqs比较分析。(5)、(6)、(7)。java苹果公司被损坏的评估分为三个层次:等级1例;无明显损害、二级;破坏的地区0.5%,三级: 破坏的地区0.5%。 连续运行试验 具备条件的速度和角度的倾向的浆纱带、喂料带速度、水果导向对料带固定在以前得到了测试。五百年,newly-harvested、统一和损害自由java苹果果实采收各品种的随机从出口果园在Nakornpathom、泰国。所有的水果都无法各品种的样品测量的物理特征,进行了每一个水果样品作为早些时候报道。结果和讨论优化速度和倾斜角度的浆纱带具体品种、速度和倾斜角度的浆纱带平均污染严重影响效率和上浆率p 0.05);基于优先级的污染率。最优速度和倾斜角度20米/分钟和85为Toonklao变化,导致最低的23.3%和79.7%的电子战(表2)。为Tubtimjan品种,适当的速度和倾斜角度20米/分钟和75,导致最低的12.1%和Ew 92.8%(表3)。虽然速度的喂养一带保持不变在15米/分钟,最佳速度和倾斜角度的浆纱带为Tongsamsri是20 - 30米/分钟和80,导致最低的88.2%的大约18.9%和Ew(表4)。表2速度和角度的影响倾向的浆纱带中的表现java苹果果实(Toonklao种类)上浆机。倾斜角度() 上浆带速度(m ) (%) (%)75 10 26.354.00 76.138.07 12 26.487.35 80.3210.49 30 27.443.48 81.977.8280 10 25.712.91 80.1110.95 20 33.146.28 75.247.23 30 33.272.45 74.914.9285 10 30.194.58 70.194.4520 23.304.19 79.745.21 30 25.263.91 76.246.07*是指在同一字母在同一列中标微不足道的差异指定p 0.05)表3速度和角度的影响倾向的浆纱带中的表现java苹果上浆机(Tubtimjan品种)。倾斜角度() 上浆带速度(m ) (%) (%)75 10 17.705.33 91.975.47 12 12.133.39 92.772.63 30 16.891.89 88.221.9680 10 20.749.17 85.427.96 20 24.255.86 88.4211.07 30 19.153.61 91.225.3386 10 25.255.09 76.188.2620 24.645.14 86.766.83 30 15.990.47 92.495.79*是指在同一字母在同一列中标微不足道的差异指定p 0.05)。 表4 速度和角度的影响倾向的浆纱带中的表现爪哇苹果上浆机(Tongsamsri品种)。倾斜角度() 上浆带速度(m ) (%) (%)75 10 24.072.76 94.963.76 12 29.015.05 95.554.73 30 23.853.25 95.103.1680 10 22.503.66 85.428.73 20 18.913.26 88.427.64 30 19.917.94 93.545.1587 10 28.604.95 87.098.9220 21.494.46 92.396.28 30 20.495.58 84.164.94*是指在同一字母在同一列中标微不足道的差异指定p 0.05)。料带速度优化操作机器的java苹果上浆在我)受控状态的最佳速度、倾斜角度的浆纱带和二期各品种的变化速度由于带均匀喂喂水果由操作员u型橡胶,发现喂食带速度有很大影响,艾玛及Q p 0.05为特定的品种。所示的最高和最低的电子战最佳饲养带速度为Toonklao,Tubtimjam和Tongsamsri品种。 表6 水果取向的影响中的表现java苹果果实上浆机。品种 水果取向 Q (kg/h) (%) (%)Toonklao 随机 263.9211.30 17.212.09 93.523.00 最大粒径 179.874.90 9.841.93 93.621.83Tubtimjan 随机 333.0928.51 6.472.46 91.2310.41 最大粒径 214.2233.49 3.161.07 97.940.97Tongsamsri 随机 326.7033.49 14.263.69 88.635.30 最大粒径 187.445.69 8.661.08 91.512.70*是指在同一字母在同一列中标微不足道的差异指定p 0.05)。显示群java的苹果果实大小分带上浆机既与无圆锥形布管和对照组的Tubtimjan,Tongsamsri和Toonklao品种。各种各样的大小的水果按机器安装锥形布管较少损伤比水果展出按机器没有锥形布管安装。Tongsamsri品种,有损伤3级按机器没有锥形布管,而没有苹果。表7;java机械损伤大小苹果果实(既与无锥形布管在机)在比较与控制样品。苹果是java的伤害分成三个层次- 1级:没有明显的损失,等级2:破坏的地区小于0.5%和三级:破坏的地区超过0.5%。连续性能上浆机的分带,经500年java苹果果实不断上浆中的各Tubtimjan,Tongsamsri和Toonklao品种。Tubtimjan品种和Q为12.2%和195.1公斤/小时,而Tongsamsri品种分别为的16.5%和181.7公斤/ 小时,Toonklao 10.8%和149.7公斤/小时。对于一个给定的变化,并问相对低于先前的测定中获得2.3.3项。这可能发生的,因为2.3.3节,有平等的编号为各大小;然而样品制备连续性能测试时依赖什么水果种植提供。重量比苹果果实的爪哇的小:中等:大尺寸的Tubtimjan品种是0.2:1:0.24,这些Tongsamsri品种1:0.99:0.57和Toonklao品种分别为0.48:1.00:0.33,分别。手动份量的java的Tongsamsri苹果品种,开往出口,平均达到107.2公斤/小时的表演污染率为27.9%,机械损伤(Eq。(7) )的13.3%。控制各种各样的受损区域被发现有轻微不同p 0.05机械尺寸的水果相比, 这意味着上浆机不花额外的明显损伤大小的水果。另外,java苹果果实机械仪可以运行在零明显的损伤作用。少犯错误,提高能力,特别是零明显损害分类的水果都被认为是一个重要的优势的浆纱分带机器。结论性能测试的java苹果果实上浆机表明速度和倾斜角度的浆纱带、进料带速度和水果取向显著地影响浆纱性能,p 0.05)。最适反应条件下连续机械浆是依赖于各种各样的水果。上浆性能最优有相当一个错误比率为10.8 -16.5%,吞吐能力149.7 -195.1公斤/小时。手动份量的java苹果开往出口的27.9%,平均比值特征误差13.3%,在损伤和容量107.2公斤/小时。发达java苹果浆纱设备可以运行在“零明显的损伤”,因此没有额外的机械损伤大小的水果。承认所有的作者想把这项工作对成功的Bundit Jarimopas迟教授。本研究通过程序格兰特是支持前沿研究网络战略奖学金,博士。泰国博士学位程序从办公室的高等教育委员会,泰国。作者想表达自己的感激之情对金融支持收到了研究生教育和研究开发项目采后技术在清迈大学和研究生院的Kasetsart大学、采后技术创新中心(PHTIC)。最终,我们要感谢Rajamankala理工大学Thanyaburi、泰国。Research PaperDesign of machine to size java apple fruitwith minimal damageKrawee Treeamnuka, Siwalak Pathaveerata,*, Anupun Terdwongworakula,Chanida BupatabaDepartment of Agricultural Engineering, Faculty of Engineering at Kamphaengsaen, and The Centre of Excellence for Agricultural and FoodMachinery Kasetsart University, Nakornpathom 73140, ThailandbDepartment of Postharvest and Processing Engineering, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, PHTIC, Chonburi, Thailanda r t i c l e i n f oArticle history:Received 29 March 2010Received in revised form28 July 2010Accepted 3 August 2010Published online 15 September 2010Java apple fruit features attractive skin, sweet and crispy flesh, and a high susceptibility tomechanical damage. The java apple produced in Thailand has gained popularity in localand foreign markets, is available almost all year round and is sold at good prices. Fruitexport drives postharvest mechanisation, of which fundamentally important machinessuch as a mechanical sizer for java apple are still not available. This research was aimed atdesigning, constructing, testing, and evaluating an efficient sizing machine for java apple.Design concepts featured a) a sizing parameters which were determined by the diameter ofthe fruit and b) a sizing mechanism which causes minimum damage. The sizing machinecomprised a feeding unit and a diverging belt sizing unit that are powered by two 187 W220 V 50 Hz electric motors, gear reducer and pulleys. Performance tests indicated thatvelocity and inclination angle of the sizing belt; feeding belt velocity and the fruit orien-tation significantly affects the sizing performance at p 0.05. The optimum conditions forcontinuous mechanical sizing depended on the variety. The optimum sizing performancewas characterised by a contamination or error ratio of 10.8e16.5%, and a throughputcapacity of 149.7e195.1 kg h?1with no significantly noticeable damage to the sized fruits.Manual sizing of the exported java apple featured an error ratio of 27.9%, a damagepercentage of 13.3%, and a capacity of 107.2 kg h?1. Therefore, the java apple sizingmachine can be operated without adding more mechanical damages to the sized fruit. 2010 IAgrE. Published by Elsevier Ltd. All rights reserved.1.IntroductionJava apple fruit is popular in Thailand and abroad due to itsbeautiful skin colour as well as sweet and crispy flesh. Thefruit is also of high nutritional value. In the year 2005, exportsof the flesh java apple from Thailand reached as much as 44.6million US $, which made it the third ranking export fruit afterdurian and longan.Amongst postharvest operations of the fresh fruit, sizing isconsiderably labour intensive. Sizing is necessary, becausethe sized fruit a) has higher value than fruit that is soldunsorted b) it attracts buyers and c) it facilitates packaging* Corresponding author. Fax: +66 34351896.E-mail address: fengslpku.ac.th (S. Pathaveerat).Available at journal homepage: /locate/issn/15375110biosystems engineering 107 (2010) 140e1481537-5110/$ e see front matter 2010 IAgrE. Published by Elsevier Ltd. All rights reserved.doi:10.1016/j.biosystemseng.2010.08.001designs(Jarimopas,Toomsaengtong,Singh,Singh,&Sothornvit, 2007; Peleg, 1985). Manual sizing is beset by slowsizing rates, considerable errors and mechanical damage. Forexample, the manual sizing of fresh mangosteen (Jarimopas,Toomsaengtong, & Inprasit, 2007) and durian (Jarimopas,Siriratchatapong, Sukharom, Sihavong, & Goto, 1992) wasfound to cause error ratios of 34 and 43% respectively. Sizingmachines developed to work with tropical fruit are usuallycomposed of a perforated conveyor sizer, a belt, a board sizer,and a diverging belt. Jarimopas, Kongwatananon, Rangdang,and Yamashita (1988) tested a commercial tangerine sizingmachine with a mechanism based on the perforated conveyorsizer. Their machine consisted of five perforated cylinders ofvaryingdiametersandsized6gradesofthefruitatacapacityof1.5 tonne h?1and a sizing efficiency of 87.5%. The high sizingefficiency was perhaps due to the non-deformable aperture.Although commercially applicable, single layer feeding has tobe manually controlled and this constitutes an undesirablefeature. The sizing of a small number of tangerines is persis-tently impeded by fruits caught on the inclined plane betweenthe cylinders, so that the operator has to manually move thefruit to the next rotating cylinder to continue sizing. This isa cause of exasperation to the operators and it slows down thesizing process. The rotary sizing machine (GREEFA, Gelder-malsen, Netherlands), which is the developed model of thebelt and board sizer, was used to size mangosteen (Jarimopas,Toomsaengtong, & Inprasit, 2007; Jarimopas, Toomsaengtong,Singh, et al., 2007). The mangosteen sizer could sort 3 grades(small, medium, large) at a continuous capacity of 1026 kg h?1and an error rate of 23%. The Rotary Greefa concept has alsobeen applied to size other sphere-shaped fruit and vegetables,e.g. guava (Jarimopas, Rachanukroa, & Chen, 2002). Theadvantageoftheapparatusisitseaseoftransportation,suchason a pick-up truck. However, its performance is limited tosingle layer feeding and it is characterised by errors due to theinconsistent aperture. Jarimopas et al. (1988) developeda diverging belt sizer to sort mangosteen. The diverging belt iscomprised of two 75 mm wide belts which are inclined at anangle of 25?to the horizontal surface. The machine gradedmangosteen at a capacity of 1100 kg h?1at an efficiency rate of80%.Thelowinclinationofthesizingbeltrequiredmangosteento travel considerable distances before calibration of the fruitdiameter and the descent from sizing belt posed a majordisadvantage of the machine. This resulted in a long machine,whichmadetransportationdifficult.Furthermore,itsaperturewas inconsistent because of the non-uniformity of the sizingbelt.For the frustum-shaped fruit, such as pears and carrots,Peleg(1985)suggestedusingthedivergingbeltsizerforefficientsorting. A proper sizing machine ought to feature fast sizingrates, acceptable error ratios with insignificant mechanicaldamage. Mohsenin (1996) stated that mechanical damage wasthe by-product of the use of agricultural machinery. Possibly,theaforementionedmachines causedmechanicaldamagebutthe related evaluations were not reported. Bupata, Jarimopas,& Changtong (2007) reported that the diameter of java applefruit varies proportionally with the fruit weight. The variationof the java apple fruit diameter respective to size and cultivarwas presented by Sarakan, Jarimopas, and Changtong (2007).Based on the compression rupture force of java apple skin, itsFig. 1 e Design concept of the java apple fruit sizingmachine showing the inclination angle a and front view ofthe sizing configuration (horizontal plane is perpendicularto the paper).NomenclatureDmDiameter of the java apple fruit head, mmbDiverging angle of the sizing belt,?aInclination angle of the belt,?X12Diameter of separation of aperture between javaapple grade 1 and 2, mmX23Diameter of separation of aperture between javaapple grade 2 and 3, mmm1average diameter of java apple fruit grade 1, mmm2average diameter of java apple fruit grade 2, mms1standard deviation of java apple fruit grade 1s2standard deviation of java apple fruit grade 2EwSizing efficiencyQThroughput capacity, kg h?1CRMean contamination ratio or errorGiOutflow rate of grade i, kg h?1KiFraction of cost as related to grade iNiNumber of grade i fruit of the total assortment atthe beginning of sizingNijNumber of grade j fruit in the grade i receiverNgiNumber of grade i fruit in grade j receiverNtiTotal fruit in grade i receiver, kgPiFraction of grade i fruit of the total mixture at thebeginning of sizingPgiFraction of correct fruit in grade i receivertFeeding time, hWiWeighting functionwiTotal weight of fruit in grade i receiver, kgwtTotal fruit weight fed into sizing system, kgbiosystems engineering 107 (2010) 140e148141skin was found more susceptible to damage than apple(Jarimopas, Toomsaengtong, & Inprasit, 2007; Jarimopas,Toomsaengtong, Singh, et al., 2007). Abrasion and bruisingwere potentially found on packaged java apples under simu-latedtransportvibrationwhilstgreaterabrasionwasobserved.(Jarimopas, Toomsaengtong, & Inprasit, 2007; Jarimopas,Toomsaengtong, Singh, et al., 2007).Commercially java apple yields high prices, and is gain-ing popularity in foreign markets where it is availablealmost all year round. Fruit production is rather uniformbutshortages and costs of labour are becoming crucial.Therefore, the demands for sizing machines have increased.A specific sizing machine for java apple fruit is not avail-able.Thedevelopmentofasimple,compact,ruggedmechanical sizer to work with the highly susceptible fruit isa challenge. Thus, this research is aimed at designing,constructing, testing, and evaluating a sizing machine forfresh java apple fruit with acceptable error rates andminimal damage.2.Materials and methods2.1.Design and operation2.1.1.DesignThe design concept comprised four criteria: a) the sizingparameter was to be determined by the diameter of the javaapple fruit head (Dmin Fig. 1), b) the sizing mechanism had toincurre minimum damage, c) the sizing machine had toprovide mechanisms to consistently meter the fruit diameterand to uniformly release the measured fruit into receivingcontainer of the corresponding size, and d) the machineshouldbesimple,compact,ruggedandtransportable.A divergingbelt designwas selectedbecause(i) the sizingbeltsprovide two contact points that measure the java applediameter whilst the fruit progresses along the belts. (ii) thesizing belts travel simultaneously diverging during move-ment;and asa result,themeasuredfruitdescends onthebeltsand left the belts at their base (aperture) when the apertureloses contact with the measured fruit; the fruit descends tothe receiving container of the corresponding size. (iii) theshape of java apple fruit fairly resembles that of pear. Fig. 2showed the base view of the diverging belt sizing machine;the solid line shows the rim of the aperture.Preliminary drop tests of 15 fresh intact java apple fruit (ofuniform size) from 150, 200 and 250 mm height onto a hardsurface cushioned by 20 mm foam rubber revealed that fruitdamaged occurs at a minimal plunge height of 200 mm. For anassumed uniformly accelerated motion, this corresponds to0.2 s drop time (Meriam, 1975). The travel velocity of the sizingbelt of 200 mm s?1and the combined time of fruit descent andfruit removal from of the receiving tray of 0.5 s, dictatesa feasible placement of the fruits at 200 ? 0.5 100 mmintervals. The diverging belt sizing machine was designed asto allow 3 fruits of the same grade to travel in sequence alongthe belt (the small grade permits 4 fruits) (Fig. 2). Three grades(large, medium, and small) are required. The active length wasto be 900 mm plus 100 mm of additional space for the fruitrebound (if any) on each side, giving a total length of 1100 mmis designates. The diverging angle of the belt is b in Fig. 1. Asper Bupata et al. (2007), b was equal to 0.29, 0.55 and 0.34?forthe varieties of java apple Toonklao, Tubtimjan and Tong-samsri respectively. The inclination angle of the belt is shownas a in Fig. 1. The diverging belts need to be inclined to thehorizontal plane, because the inclination causes 2 pointcontact for every fruit during movement regardless of size.Thus, every fruit is measured at its head diameter. Should a beFig. 2 e Aperture profile of the sizing belt (BL belt length, WL sizing length of grade L, WM sizing length of grade M,WS sizing length of grade S, kt interval of fruits (200 mm).Table 1 e Statistics of aperture and b angles of the sizing belts.VarietyMaximum Diameter for the fruit size (mm)X12(mm)X23(mm)b (?)SMLToonklao52.92 ? 1.5757.70 ? 0.8964.12 ? 1.3759.96 ? 4.1653.01 ? 7.300.29Tubtimjan45.30 ? 2.9358.08 ? 1.5365.80 ? 1.3662.87 ? 9.4094.86 ? 32.730.55Tongsamsri51.15 ? 2.2058.47 ? 1.5363.07 ? 1.8265.33 ? 10.0247.39 ? 13.290.34biosystems engineering 107 (2010) 140e148142too large the fruit falls and does not symmetrically lie on thebelts with respect to the y-axis and the head diameter istherefore not measured. If the a is too small, the fruit shouldermight stay at the rim, and diameter measurement does notoccur. The appropriate inclination angle (a) therefore neededto be determined. Eq. (1) (Peleg, 1985) suggests the estimate ofdiameter of separation (X12and X23) between java apple fruitsof adjacent grades from the mean and the standard deviationof each adjacent grade. The values of X12and X23are given inTable 1.X12?m2s21? m1s22?s21? s22?m2s21?1s22s21? s22?2?m22s21? m21s22? 2s21s22lns1=s2?s21? s22#121whereX12 diameters of separation of aperture between java applegrade 1 and 2m1 average diameter of java apple fruit grade 1m2 average diameter of java apple fruit grade 2s1 standard deviation of java apple fruit grade 1s2 standard deviation of java apple fruit grade 2Fig. 3 shows the developed java apple fruit sizing machinewith the feeding unit and the diverging belt sizing unit. Thefeeding unit, 598 mm wide by 1430 mm long by 520 mm high,was made of steel. Two 25.4 mm diameter cylindrical shaftswere mounted at the top of the frame to facilitate beltadjustments. The feeding belt, Ammeraal type Belt Flexam EM10/2GreenFG(AmmeraalBeltech,Heerhugowaard,Netherlands), was 100 mm wide by 2400 mm long and parallelFig. 3 e Schematic diagram of java apple fruit sizing machine (A feeding unit; B diverging belt sizing unit; 1 receivingtray; 2 steel frame; 3 conical cloth tube; 4 cushioned sizing belt; 5 universal joint; 6 cylindrical shaft; 7 electricmotor and reduction gear; 8 U-shape rubber holding java apple; 9 feeding belt).Fig. 4 e Typical motion of java apple fruit and the conical cloth tube of the sizing machine.biosystems engineering 107 (2010) 140e148143to the floor. The feeding unit was driven by a 0.19 kW 220 V50 Hz electric motor, a 1: 20 gear reducer, a chain and a pulley.A U-shape rubber cushion was attached to the surface ofconveyor belt with 80 mm spacing of the partial containers ofthe fruit for uniform semi-automatic fruit feeding. The sizingmachine, made of steel and 390 mm wide, 1510 mm long and765 mm high, featured a galvanised steel receiving tray600 mm wide 1100 mm long, and 80 mm deep. The receivingtray was cushioned with 20 mm rubber foam with twoadjustable partitions for the desired fruit size separation. Thesizing belts diverged and were inclined to the horizontal planeatadegree.Each ofthetwosizingbelts,AmmeraaltypeNonexEM 8/2 Blue FG were 100 mm wide and 2500 mm long. Theouter surface of the belts was lined with 4 mm latex foam.Each belt was driven at the same velocity by a 220 V 50 Hzelectric motor operating at 1450 rpm with reducing gear anda universal joint to facilitate the adjustment of belt angle.A cloth conical tube was placed between the end of thefeeding belt and the beginning of the sizing belt to control thevertical descent of the java apple fruits, to decelerate fruitdrop onto the sizing belt thereby reducing damage to the fruit.The movement of the fruit on the sizing belt was belowhorizontal thereby minimising vertical sliding. The conicalcloth tube was 120 mm long and made of yarn. It hada 100 mm aperture diameter at the top and 60 mm aperturediameter at the bottom. The feeding machine and the sizingmachine were placed in proximity to the cloth conical tubeand were well aligned.2.1.2.OperationJava apple fruits were manually continuously fed into the U-shaped rubber of the feeding belt by an operator in such a waythat the stem end of the fruit was parallel to the belt move-ment.This providesa uniformly automatic feed of the fruits tothe sizing belt. However, the feeding machine capacity waslimited by the operators competence. The conveyed fruit leftthe feeding belt and dropped vertically into the conical clothtube (Fig. 4). The conical cloth tube not only carried the fruitvertically, but it also decelerated the fruit to minimise theimpact on the sizing belt. The appropriate alignment andsymmetry of the feeding belt, the cloth conical tube, and thesizing belt improved the vertical orientation of the java appleduring its descent at the start of the sizing process.The sizing belt carried the java apple fruits past 2 contactpoints. The forward motion, divergence of the sizing belts andthe fruit weight caused the fruit to descend towards the lowerend or the aperture of the belts. Therefore, the two contactpoints on the sizing belts and fruit surface were continuously.Such phenomenon could cause skin rubbing on the fruit andmight give rise to abrasion. This was prevented by cushioningon the surfaces of the sizing belts. When the fruit reached theaperture that infinitesimally exceeded the fruit diameter, thefruit lost contact with the belts and fell into the correctreceiving tray.2.2.Performance testSamplepreparationforthedeterminationofoptimumworking conditions included the random selection of newly-harvested, uniform and damage free java apple fruit. Thirtysamplefruitsofeach size(threesizes:small,medium,large)ofeach variety (three varieties: Toonklao, Tubtimjan and Tong-samsri) were collected. Maximum fruit head diameter, lengthand weight of each sample were measured with a verniercalliper and an electronic balance (Sartorius G 6000, SartoriusAG, Goettingen, Germany).2.2.1.Determination of the optimum angle of inclination andthe velocity of sizing beltSamples of java apple fruit were prepared as mentionedabove. Testing conditions included two control factors; theangle of inclination of the sizing belt (3 levels: 75?, 80?and 85?)and the sizing belt velocity (3 levels: 10, 20 and 30 m min?1).Uniform feeding of java apple samples to the sizing belt wasregulated at 15 m min?1. Five replications were carried out fora combination of thecontrol factors.Performance of the sizingmachine was evaluated with Eqs. (2e4). Analysis of variance(ANOVA) and Duncan Multiple Range Test (DMRT) wereapplied to determine the influence of the control factors.EwX?pgiWiGiQPi?(2)Q wtt(3)CRSNijSNi(4)wherePgiNgiNtiNti Ngi NijWiKiPiSKiPiPiNiSNiGiwitFig. 5 e Shape of the head of a java apple fruit.biosystems engineering 107 (2010) 140e148144andwhereEwissizingefficiency,Qisthroughputcapacity,CRismean contamination ratio or error, Giis outflow rate of grade i,Kiisthefractionofcostasrelatedtogradei,Niisthenumberofgrade i fruit of the total assortment at the beginning of sizing,Nijnumber of grade j fruit in the grade i receiver, Ngiis thenumberof gradei fruitin gradejreceiver,Ntiis thetotal fruitingradeireceiver,PiFractionofgradeifruitofthetotalmixtureatthe beginning of sizing, Pgiis the fraction of correct fruit ingrade i receiver, t is feeding time, Wiis a weighting function,wiisthetotalweightoffruitingradeireceiverandwtisthetotalfruit weight fed into sizing system.2.2.2.Determination of the optimum feeding belt velocityThe sample preparation as described above was repeated forthese tests. The determined condition of velocity and incli-nation angle of the sizing belt for a specific variety was notaltered throughout the determination. The control factorswerethefeedingbeltvelocities(3levels:15,20and25 m min?1). Five replications were carried out. The sizingmachine performance was analysed using ANOVA and DMRT.2.2.3.Determination of the optimum fruit orientation and theassociated mechanical damageThe shape of the java apple fruit (Fig. 5) determined themaximum and the minimum dimensions of the fruit head.Both parameters were significantly different (Bupata et al.,2007). The fruit shape influenced the test condition of fruitorientation in regard to the sample placement on the feedingbelt(2possibilities:randomplacementandhorizontalmaximum diameter placement). Each fruit sample was placedwith its stem orientated towards the sizing unit. The deter-mined conditions of velocity and inclination angle of thesizing belt, and feeding belt velocity for a specific variety werenot altered throughout the experiment. Sample preparationwas as reported earlier. The testing procedure and statisticalanalysis of results were as used in the earlier tests.Following the tests 90 java apple samples of all sizes wererandomly collected and stored at 15?C for 6 h (Jarimopas,Toomsaengtong, & Inprasit, 2007; Jarimopas, Toomsaengtong,Singh, et al., 2007). The damage characteristics of java applesthat were sized by the machine, both with and without conicalcloth tube, and a control set of fruits (which was not processedby the machine) were comparatively analysed using Eqs. 5, 6and 7.Damage area% Damaged area of a fruitFruit surface area? 100(5)Average fruit damage% Total of Damage areaTotal java apple fruit? 100(6)Damagepercentage%Numberof damagedfruitTotaljavaapplefruit?100(7)The damage of java apple was assessed into 3 levels: level 1;no apparent damages, level 2; damage area 0.5%, and level 3;damage area 0.5%.2.2.4.Continuous operation testThe appropriate conditions of velocity and inclination angle ofthesizingbelt,thefeedingbeltvelocity,thefruitorientationonthe feeding belt previously obtained were fixed for this test.Fivehundred,newly-harvested,uniformand damage freejavaapple fruits of each variety were randomly harvested from anexport orchard in Nakornpathom, Thailand. Measurements ofthe physical characteristics of each fruit sample were carriedTable 2 e Effects of velocity and inclination angle of thesizing belt on the performance of the java apple fruit(Toonklao variety) sizing machine.Inclinationangle (?)Sizing beltvelocity (m min?1)CR* (%)Ew*(%)751026.35 ? 4.00ab76.13 ? 8.07ab2026.48 ? 7.53ab80.32 ? 10.49ab3027.44 ? 3.48bc81.97 ? 7.82a801025.71 ? 2.91ab80.11 ? 10.95ab2033.14 ? 6.28bc75.24 ? 7.23ab3033.37 ? 2.45a74.91 ? 4.92ab851030.19 ? 4.58abc70.19 ? 4.45b2023.30 ? 4.19bc79.74 ? 5.21ab3025.26 ? 3.91ab76.24 ? 6.07ab*Means with the same letter in the same column designate insig-nificant difference at p 0.05.Table 3 e Effects of velocity and inclination angles of thesizing belt on the performance of the java apple sizingmachine (Tubtimjan variety).Inclinationangle (?)Sizing beltvelocity (m min?1)CR* (%)Ew* (%)751017.70 ? 5.33abc91.97 ? 5.47ab2012.13 ? 3.39a92.77 ? 2.63b3016.89 ? 1.89ab88.22 ? 1.96ab801020.74 ? 9.17bcd85.42 ? 7.96ab2024.25 ? 5.86cd88.85 ? 11.07ab3019.15 ? 3.61abcd91.22 ? 5.33ab851025.25 ? 5.09d76.18 ? 8.26a2024.64 ? 5.14cd86.76 ? 6.83ab3015.99 ? 0.47ab92.49 ? 5.79ab*Means with the same letter in the same column designate insig-nificant difference at p 0.05.Table 4 e Effects of velocity and inclination angles of thesizing belt on the performance of the java apple sizingmachine (Tongsamsri variety).Inclinationangle (?)Sizing beltvelocity (m min?1)CR* (%)Ew* (%)751024.07 ? 2.76ab94.96 ? 3.76b2029.01 ? 5.05b95.55 ? 4.73b3023.85 ? 3.25ab95.10 ? 3.16b801022.50 ? 3.66ab88.42 ? 8.73ab2018.91 ? 3.26a88.22 ? 7.64ab3019.91 ? 7.94a93.54 ? 5.15b851028.60 ? 4.95b87.09 ? 8.92ab2021.49 ? 4.46a92.39 ? 6.28ab3020.49 ? 5.58a84.16 ? 4.94a*Means with the same letter in the same column designate insig-nificant difference at p 0.05.biosystems engineering 107 (2010) 140e148145out as reported earlier. All the fruit samples of each varietywere continuously sorted by the prototype machine and theperformance of the machine evaluated.3.Results and discussion3.1.Optimum velocity and inclination angle of the sizingbeltFor specific varieties, the velocity and the inclination angle ofthe sizing belt significantly affected the mean contaminationratio CR and sizing efficiencyat p 0.05; based on the priorityof contamination ratio. The optimum velocity and the incli-nation angle were 20 m min?1and 85?for Toonklao variety,resulting in the lowest CRof 23.3% and an Ewof 79.7% (Table 2).For the Tubtimjan variety, the appropriate velocity andthe inclination angle were 20 m min?1and 75?, resulting in thelowest CRof 12.1% and Ewof 92.8% (Table 3). Although thevelocity of the feeding belt was kept constant at 15 m min?1,the optimum velocity and the inclination angle of the sizingbelt for the Tongsamsri were between 20 and 30 m min?1and80?, resulting in the lowest CRof approximately 18.9% and Ewof 88.2% (Table 4).3.2.Optimum feeding belt velocityOperation of the java apple sizing machine under i) thecontrolledconditionofoptimumvelocityandinclinationangleofthesizingbeltforeachvarietyandii)thevariationoffeedingbeltvelocityduetouniformfeedthefruitonU-shaperubberbythe operator, revealed that the feeding belt velocity signifi-cantly affected CR, Ewand Q at p 15 m min?1for the Tubtim-jan variety, becauseat high velocity, some fruits left the belt inan unsymmetrical manner when passing through the conicalcloth tube. As a result, the fruits were not vertical when theycontacted the sizing belt which caused sizing errors.3.3.Optimum fruit orientation and damage analysisWith respect to the optimum velocity, inclination angle of thesizing belt and the feeding belt velocity for a specific variety,assessment of the sizing machine indicated that fruit orien-tation significantly affected the performance of the machineat p 0.05. Table 6 exhibits the maximum diameterplacementon the U-shape rubber produced smaller CRand smaller Q forall varieties when compared to the CRand Q for randomplacement. The smaller Q might be due to the care of theoperator in keeping the position of the fruit in the U-shaperubber in conformity with to the B-orientation, however thispractise caused some loss in time. This problem could besolved by more practise with fruit placement.Table 7 shows the group of java apple fruit sized by thediverging belt sizing machine both with and without theconical cloth tube and the control group of Tubtimjan, Tong-samsri and Toonklao varieties. All varieties of sized fruitssorted by the machine with installed conical cloth tubeexhibited less damage than fruit sorted by the machinewithout the conical cloth tube installed. In case of the Tong-samsri variety,therewas damageat level 3 when sortedby themachine without the conical cloth tube while no level 3damage was observed for sorting by the machine with thecloth conical tube. The apparent damage on the fruits waseitherwithinnormalparametersorabsent.Themostfrequently observed levels of damage were in the minimaldamage level (level 2: damage area 0.5 percent).3.4.Continuous performanceThe diverging belt sizing machine was tested by continuouslysizing 500 java apple fruits from each of the Tubtimjan,Table 5 e Effects of feeding belt velocity on theperformance of the java apple fruit sizing machine.VarietyFeeding beltvelocity (m min?1)CR* (%)Ew*(%)Toonklao155.80 ? 2.05b96.80 ? 1.22b2011.35 ? 2.16a92.26 ? 1.99a2516.02 ? 1.66c89.69 ? 5.36aTubtimjan1512.13 ? 3.39b92.77 ? 2.63a2024.24 ? 2.40c86.68 ? 5.80b2523.16 ? 4.15c85.77 ? 4.94bTongsamsri1518.91 ? 3.26a88.22 ? 7.64a2020.58 ? 10.26a80.93 ? 12.08a2520.30 ? 3.44a83.13 ? 6.08a*Means with the same letter in the same column designate insig-nificant difference at p 0.05.Table 6 e Effects of fruit orientation on the performance of the java apple fruit sizing machine.VarietyFruit orientationQ *(kg h?1)CR*(%)Ew*(%)ToonklaoRandom263.92 ? 11.30b17.21 ? 2.09b93.52 ? 3.00aMaximum diameter179.87 ? 4.90a9.84 ? 1.93a93.62 ? 1.83aTubtimjanRandom333.09 ? 28.51b6.47 ? 2.46b91.23 ? 10.41aMaximum diameter214.22 ? 8.37a3.16 ? 1.07a97.94 ? 0.97bTongsamsriRandom326.70 ? 33.49b14.26 ? 3.69b88.63 ? 5.30aMaximum diameter187.44 ? 5.69a8.66 ? 1.80a91.51 ? 2.70b*Means with the same letter in the same column designate insignificant difference at p 0.05.biosystems engineering 107 (2010) 140e148146Tongsamsri and Toonklao varieties. CRand Q for the Tub-timjan variety were 12.2% and 195.1 kg h?1while those for theTongsamsri variety were 16.5% and 181.7 kg/h and for Toon-klao 10.8% and149.7 kgh?1respectively. For a givenvariety, CRand Q were relatively lower than those obtained in theprevious determination in paragraph 2.3.3. This might occurbecause in Section 2.3.3, there were equal in numbers for eachsize; whereas the sample preparation of the continuousperformance test was dependent on what the fruit growersprovided. The weight ratios of the java apple fruits of small:medium: large size of the Tubtimjan variety were 0.2: 1: 0.24,those of the Tongsamsri variety were 1: 0.99: 0.57 and those ofthe Toonklao variety were 0.48: 1.00: 0.33, respectively.Manual sizing of the java apples of the Tongsamsri variety,destined for export, on average achieved a performance of107.2 kg h?1with a contamination ratio CR of 27.9% andamechanicaldamage(Eq.(7)of13.3%(Treeamnuk,Jarimopas, & Jantong, 2008). Percent of damaged area wasfound to be insignificantly different at p 0.05 for themechanically sized fruit when compared with the control forevery variety. This implies that the sizing machine did notincur additional noticeable damage to the sized fruits. Alter-natively, the java apple fruit mechanical sizer could be oper-ated at zero noticeable damage. Fewer errors, improvedcapacities and, in particular, zero noticeable damages in thesorting of fruit are considered to be a significant advantage ofthe diverging belt sizing machine.4.ConclusionsThe performance test of the java apple fruit sizing machineindicate that velocity and inclination angle of the sizing belt,feeding belt ve
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小金橘自动分级机机械设计-水果分选机设计【含11张CAD图纸和文档资料】
链接地址:https://www.renrendoc.com/paper/96390813.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!