输电线路毕业设计英文_第1页
输电线路毕业设计英文_第2页
输电线路毕业设计英文_第3页
输电线路毕业设计英文_第4页
输电线路毕业设计英文_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附录 外文资料翻译1000千伏交流电源输电线路的雷电保护摘要:首先,结合日本和前苏联在闪电特高压输电线路的性能和分析的特点,以及1000kV 输电线路的闪电跳闸率过高经验和教训的基础上,本文作者提出在中国 1000千伏输电线关键技术研究中应该减少雷击损坏率的一个关键点,明确提出在防雷保护中保护失效的预防闪络为研究的主要方向。本文提出,降低接地屏蔽线的角度和距离的差距与一个合适的长度是1000千伏输电线路跳闸率减少屏蔽失效一个重要的措施。因此,尤其必须注意防护屏蔽失效的地面延长线更大倾斜的山区线路。在本文中,作者介绍了在中国平原和山区用于特高压输电线路接地屏蔽线的角度以及中国特高压输电线路在最近的两年半的时间里运行情况。目前在中国的特高压输电线路雷击跳闸的故障不会发生了,因此初步呈现出良好的防雷性能。作者还介绍了在中国特高压变电站计算闪电侵入过电压的使用方法和原则和提出并行采取的两个措施降低最高雷电流的屏蔽故障输入线电流截面和优化布置闪电避雷器来限制过电压侵入变电站,因此,会限制需求过电压和避雷器的数量减少。关键词:超高压,输电线路,变电站,雷电侵入波,过电压,1000V对特高压输电线路的防雷性能的研究 A.特征 特高压输电线路有两种功能的防雷性能:1)特高压输电线路绝缘水平是非常高的,因此具有引人注目的很低架空地线的可能性和塔顶导致导致发生雷电反击失败。2)塔的高度对特高压输电线是非常高的,因此容易导致屏蔽失败。前苏联特高压输电线路的运行经验 1 2 表明,闪电剔除是输电线路的主要原因剔除。从1985到1994这十年期间,在特高压雷击跳闸次数输电线路是16,占总数的84%数量的剔除。然而,导致闪电剔除的主要原因是导体受到直接雷击屏蔽故障。在前苏联特高压输电线路的地线保护角过大(超过20 ) ,从而导致过高的剥离率使闪电防护失败。在日本1000kV 输电线路在同塔双回路线路,已用于 500kV 电压。1993当它投入运行到九月2007,总共68个跳闸故障发生在传输线,其中67的故障属于雷击跳闸,占总跳闸故障98%。 这表明,雷电屏蔽故障的主要原因是特高压输电线路的雷击跳闸故障 4 5 ,在日本特高压输电线路雷击跳闸高达0.94次/ 百公里年利率(计算在同塔双回输电线路的长度) 。 一个重要的原因在于在弧角较短的距离(5.9米)用于输电线路绝缘子串。 中国的闪电定位资料记录的数据表明 6 ,中国屏蔽故障导致对500kV 输电线路雷击跳闸故障90%。 对特高压与更高的绝缘水平,它将更加明显,雷击跳闸的原因主要是屏蔽失败了。因此,中国在特高压输电线路建设中,前苏联和日本的教训应该专门做在这方面为了防止导线是由雷电屏蔽失效的。 B.预期闪电跳闸率 预期1000kV 输电线路雷击跳闸率应低于500kV 输电线路,前者可以看作是后者的约70% ,即约 0.1次/年100公里。 因为较少的保证金中国电网较弱的网络结构,为输电线路雷击跳闸率的要求是略高于日本和美国。 C.防雷性能计算方法EMTP 的计算程序已用于雷电闪络故障的研究。 交会法,即,过压波 U0和绝缘脉冲放电电压的第二特性曲线相交或不相交,用于模拟领导发展过程中的领导方法已被用于判断是否发生之间的绝缘间隙的闪络。 对改进的电气几何模型 9 用于屏蔽故障,应考虑以下因素:对雷电先导的入射角的概率分布; 3cosmKP修正系数 雷击到地面的距离 8.0gk对绝缘闪络导体的工作电压的影响。在导体屏蔽故障发生时的过电压: tEZIUmcsin2.式中, 屏蔽故障电流的雷电幅值; 是导线的波阻抗; 是工作电压的幅值;mI c mE高度的变化的内导体和接地的一个跨接地线。 我们还对由一个先导传播模型绕击跳闸率的计算研究(LPM) 。 然而,计算得到的结果与条件和参数的不同标准向上领袖起源和发展有很大的差异 10 11 。 我们认为闪电发展与多复杂的因素影响的物理过程是在一个更详细的考虑的LPM,有其合理性。然而,由于对闪电的物理过程,对一些重要的标准和参数不确定性的知识方面的知识的局限性,它有可能使计算仍有较大的误差。到现在, LPM 是在不成熟的阶段,因此它不能直接用于工程计算,但其结果可以用来作为参考。 D.雷击跳闸率单回路输电线路 塔的类型 1000kV 单回路输电线路典型塔类型如图1所示,侧相绝缘子串我和中相绝缘子串V. 边相导线和塔之间的距离为所需值工作电压的间隙距离的中间阶段和塔之间的强风和距离条件下的控制所需的操作过电压间隙值的控制。雷电冲击间距不为塔头尺寸起着控制作用。换句话说,实际距离在雷电冲击6.7m (海拔500m 以下) (a)猫头型塔 (b)杯式塔 图1.1000kV 单回路输电线路塔型 1)闪络跳闸率的计算无论什么样的塔是用什么方法作为绝缘闪络判据,反击跳闸1000kV 单回路输电线路速率很低,低于0.0045次/年100公里。因此,对 1000kV 单回路输电线路, 反击不导致雷击跳闸的主要原因。 2)绕击跳闸率的计算 特高压输电线路,主要的原因导致雷击跳闸是屏蔽的导体和屏蔽故障减少故障跳闸率的最有效措施是减少地线保护角,特别是在山区的特高压输电线路。 电气几何模型进行了雷电绕击跳闸与不同类型的塔传输线率的计算,与地线保护角为小于6,猫头塔和杯式塔为小于 4 ,详见图 1。计算的结果列于表1。 表1 雷电屏蔽故障跳闸率(次/ 百公里年) 地面的倾斜角度() 塔式 0 10 20 30杯型 ZBS2 0 0 4.810-9 0.019猫头型 zmp2 0 0.0058 0.108 0.618从表1可以看出, (1 )降低地线保护角有显着影响降低绕击跳闸率的闪电;(2)地面的倾斜角对绕击跳闸率有很大的影响。此外,足够高的绝缘或特高压输电线路的距离降低屏蔽故障提供了一个良好的基础。特高压输电线路地线保护角的选择根据地形线和地面的倾斜角度变化的一些差异。在中国的特高压输电试验示范项目,建议在平原区和山区杯式塔使用的猫头型塔。接地屏蔽线的角度推导距离的增加,两个地线和中间相的两个地线屏蔽功能的减少之间。无论是雷电屏蔽故障对中间相导体导致上述情况从而导致绝缘闪络,然后断开的线吗? 电气几何模型是用在我们的研究分析绕击跳闸率中相导线。以一杯形塔为例,两个姐弟导线的宽度为57.6米,计算的垂直距离之间的 地线和导体是13m,用计算结h果见表2所示。计算结果表明,在中间相导体的雷电屏蔽故障的可能性。然而,只有雷击的雷电流幅值小( )可以通过屏蔽两个地线,进一步导致屏蔽故障对中间相kAI9导体。屏蔽导体雷击等故障幅度远不足以导致绝缘闪络,也不会导致输电线路跳闸。闪电与更大的雷电流幅值只能打击地线不能通过两个地线罢工的方式来屏蔽故障中相导线。因此,对地线屏蔽角的减少可以增加两个接地线之间的距离,而不会造成屏蔽故障对中间相导体,从而导致跳闸的线路。闪电与更大的雷电流幅值只能打击地线不能通过两个地线罢工的方式来屏蔽故障中相导线。因此,对地线屏蔽角的减少可以增加两个接地线之间的距离,而不会造成故障对中间相导体屏蔽,从而导致跳闸的线路。表2 雷电流最大可能的屏蔽对中间相导体故障(EGM ) 塔类型 两个接地导线之间的 空间( M) 导线和地线之间的垂直距离 (M)h最大雷电屏蔽对中相导线故障电流( KA) 15 7.91ZBS2 57.613 8.8413 2.7ZMP2 29.411 2.8计算了采用 LPM 在中国的几个大学,类似的结论。 3)在中国特高压单回路输电线路防雷运行经验随着641km 总长度, 1000kV 交流输电线路的测试和试验项目已于 2009一月投入运营,已经运行了两年半,没有任何的雷击跳闸的发生。虽然它的运行时间不长,它已明显表现出与线路雷击跳闸率在日本的特高压输电线路和前苏联的防雷性能比较好。这表明,较高的雷击跳闸率不特高压输电线路的固有特征。如果合理措施的采用,其雷击跳闸率可以降低到一个很低的水平。表3列出了避雷器的作用情况在三个变电站(或开闭站)对中国的1000kV 交流输电线路在1月 2009和12月2010的两年期和示范工程测试。从表3 可以看出,雷电屏蔽故障发生在这三个变电站1000kV 输电线路相导线连接(或开闭站) 。猫头型塔基本上是用在传输线的南阳荆门段。对长治南阳段,杯型塔使用的基本上都是在长治和猫头型塔侧使用的基本上都是在南阳边。它可以从避雷器,侧相屏蔽故障发生在猫头型塔的作用情况判断和屏蔽故障可能发生在侧相,用杯式塔线中间相。然而,雷电流的幅值不那么大,从而导致避雷器动作,但不引起绝缘闪络和线路跳闸。这些情况符合的计算结果。表3 避雷器的特高压变电站的行动 对避雷器动作次数 名称的变电站 侧相 中间阶段 总次数长治 1 2 3南阳 2 0 2荆门 3 0 3E.雷击跳闸对同塔双回输电线路速率中国首个特高压双回输电线路同塔的建设可能在今年开始。目前,这种输电线路防雷的研究工作已基本完成。1)塔型和防雷性能 在中国,筒式塔采用500 kV 输电线路,但伞式塔用于1000kV 输电线路(见图2 ) 。在这一方面的原因是,伞型塔的防雷性能优于滚筒式塔。计算值的雷电绕击跳闸率的特高压双回输电线路同塔与伞型塔筒式塔列于表4 。雷电冲击距离在同塔双回路的1000kV 输电线路塔头的大小起着重要的控制作用。所需的值是6.7m(海拔500m 以下) 。 图2 鼓和伞式塔 表4 绕击跳闸同塔双回输电线路速率的计算值(次/百公里年) 地面倾斜度() 鼓形 伞型 0 0.107 0.08410 0.28 0.2392)反击跳闸率 与单回路输电线路铁塔,为双回输电线路同塔的塔建在更高、反击跳闸率也会相对增加。表5 列出了闪络跳闸的双回路输电线路建立在相同的塔率的计算结果。 表5 闪络跳闸同塔双回路输电线路速率 塔的类型 距离(米) 反击跳闸率(次/百公里年) 1号线 7.2 0.0117/0.006注意:在“反击跳闸率 ”栏目,分子 /分母分别代表反击跳闸率的同塔双回线路,转换为反击跳闸率为单一的电路线。雷电反击跳闸率转化为一个单回路输电线路为0.006次/百公里年,远远低于预期的雷击跳闸率,占总数的雷击跳闸率比一点。 3)绕击跳闸率 以双回路输电线路塔型在图2所示为例同塔,地线保护角伞式塔是 5.4,筒式塔是3.4,40雷雨天,随着击剔除率表6中列出的计算结果。由于塔的更高的双回输电线路同塔,地球的屏蔽效果,比普通单回路输电线路相对较弱。如果同一屏蔽角,绕击跳闸的线路速率是较高的。三个因素,即地线保护角,地面倾斜角度和导体的最小空气间隙距离塔对绕击跳闸率的重要影响。绕击跳闸与地线保护角减速度的降低,与地面的倾角和降低雷电冲击塔的最小空气间隙距离的增加而增大。这些导致了特高压输电线路雷击跳闸故障几乎屏蔽和屏蔽故障的最大电流是有限的。这是不可能的,过度的雷电流的导体的罢工。间距适当增加可以避免绕击闪络。从表6可以看出,如果使用图2 所示的塔的典型类型,与地面倾角小于等于 10地区。地线保护角 是 3.4,间隙670万和雷电绕击跳闸率为 0.113次/ 公里年。因此绕击跳闸率,能够满足预期的雷击跳闸率的要求。 表6 绕击跳闸同塔双回输电线路速率(次/百公里年)地面的倾斜角度 ()间隙距离(米) 保护角() 0 10 20 30-5.4 0.052 0.17 0.648 1.781-3.4 0.068 0.204 0.731 1.9436.00 0.112 0.287 0.917 2.273-5.4 0.014 0.088 0.499 1.427-3.4 0.048 0.113 0.522 1.5766.70 0.048 0.178 0.688 1.882-5.4 0.007 0.067 0.387 1.308-3.4 0.013 0.089 0.456 1.4517.10 0.033 0.147 0.615 1.749-5.4 0.002 0.041 0.299 1.129-3.4 0.005 0.058 0.362 1.2657.60 0.017 0.107 0.509 1.548因此,它是在规定的中国国家标准GBZ 24842-2009: (1)对地线保护角特高压双回输电线路同塔,一般不大于3 平原和丘陵地区,一般不大于 5山区;(2 ) 雷电过电压的最小间隙距离为6.7m和7.2m (分别对应于 500米和1000 米海平面以上) 15 。参考文献1 vereshchagin,吴维韩:对俄罗斯超高压和特高压输电线路的防雷保护的分析,高电压 技术,2 号,1998 。 2 hk:过电压在高压架空线路和电缆网络和超高压输电线路保护,中国电力出 版社,1996 3 特高压交流输变电(III):1000kV交流输电线路,中国电力科学技术部部19944 谷定燮,新中国对 500kV输电线路的防雷保护观念,电力,12号,2004 5 ernational标准的绝缘配合4部分:绝缘配合和电网络模型计算指南,2004。 6 EPRI。传输线参考书345 kV及以上(第二版) ,1982 77 里兹克F点模型的输电线路暴露在直接雷击。 IEEE跨在电力输送,1990,5(4):1983 1997 。 8 电力科学技术部部,特高压交流输变电(III):1150kV 输电关键技术,1994。 9 谷定燮,绝缘方式选择500伏双回路输电线路在中国,电力,3号,1996 。 10 iec71-2。国际标准的绝缘配合2部分:应用指南,1996 12。 11 埃里克森和周 K的简化确定变电站的雷电过电压,操作冲击的代表。国际大 电网会议论文no.33-16,巴黎,1988。 12 人民共和国的中国标准化技术指南:(GB Z 24842-2009)过电压1000kV特高压交流 输电工程和绝缘配合。2009年11月30日。 Lightning Protection of 1000 kV AC Power Transmission Lines and SubstationsAbstract:First of all, in combination with characteristics of the lightning performance of UHV power transmission lines and on the basis of the analysis of experiences and lessons concerning excessively high lightning trip-out rate on 1000 kV transmission lines in Japan and the former Soviet Union, authors of this paper put forward that one of the critical points in the key technical research on 1000kV transmission lines in China should be the reduction of lightning fault rate, and definitely present the prevention of shielding failure flashover as the main orientation in the research on lightning protection.The paper presents that the reduction of ground wire shield angle and distance of the gap with an appropriate length is an important measure for reducing shielding failure trip-out rate of 1000kV transmission lines.Therefore, it is particularly necessary to pay attention to the shielding failure flashover of the lines in mountainous areas with bigger inclination of ground along the lines.thus either meeting the demand of restricting overvoltage and reducing the quantity of MOAs used.Keywords:UHV, power transmission line, substation,lightning, intruding wave, overvoltage, 1000kVRESEARCH ON LIGHTNING PERFORMANCE OF UHV POWER TRANSMISSION LINESA. FeaturesThere are two features in the lightning performance of UHV transmission lines:1)The insulation level of UHV transmission lines is very high, thus having very low possibility of striking overhead ground wire and the top of towers to result in the occurrence of back flashover failures;2)The height of towers for UHV trans mission lines is very high, thus being easy to result in shielding failures.The operating experiences of UHV transmission line sin the former Soviet Union 12 indicated that lightning strip-out was the major cause of transmission line strip-out.During the period of a decade from 1985 to1994,the number of lightning trip-out on UHV transmission lines was 16,constituting 84% of the total number of strip-out.However, the major reason causing lightning strip-out is that conductors were stricken directly by lightning strokes with shielding failures.The shield angle of ground wire in the former Soviet Unions UHV transmission lines was excessively big (more than 20),thus resulting in excessively high strip-out rate of lightning shielding failures 3.The 1000kV transmission line in Japan is the double-circuit line on the same tower,which has been operating at the voltage of 500kV.From 1993 when it was put into operation to September 2007,a total number of 68 trip-out faults occurred on the transmission line,among which 67 faults belong to lightning trip-out,constituting 98% of the total trip-out faults.This indicates that lightning shielding failures are the main cause of the lightning trip-out faults on UHV transmission lines 45,and the lightning trip-out rate of UHV transmission linesis up to 0.94 times/100km-year in Japan (calculated with the length of double-circuit transmission line on the same tower).One of the important reasons lies at the arcing horns with a shorter gap distance (5.9m) used for insulator strings of transmission lines.Data recorded by Chinas lightning locators indicate 6 that about 90% of the lightning trip-out faults on 500kV transmission lines in China are resulted from shielding failures.With still higher insulation level for UHV transmission lines, it will be more obvious that the cause of lightning trip-out is mainly shielding failures.Therefore, when UHV transmission lines are constructed in China, lessons of the former Soviet Union and Japan should be specially drawn in this aspect in order to prevent conductors to be stricken by lightning shielding failures.B. Anticipated Lightning Trip-out RateThe anticipated lightning trip-out rate for 1000kV transmission lines should be lower than that for 500kV transmission lines and the former can be considered as about 70% of the latter,i.e. about 0.1 time/100 km-year.Because of less margin of power grids in China with weaker network structure, the requirement for lightning trip-out rate of transmission lines is little higher than that in Japan and the United States.C. Calculation Method of Lightning PerformanceThe EMTP calculation procedure has been used for lightning back flashover failures in this research.The intersection method, that is, whether overvoltage wave U0(t )and insulation impulse discharge volt-second characteristic curve Uit are intersected or not,and the leader method used for simulating the process of leader development has been used to judge whether flashovers occur or not between insulation gaps.For the improved electrical geometric model 9 used for shielding failures,the following factors should be considered:(1)The distribution probability of the incident angle of lightning leader;3cosmKP(2)The revised coefficient of the distance of lightning stroke to the ground8.0gk(3)The influence of the working voltage of conductors on insulation flashover.The overvoltage on conductors when shielding failures occur:tEZIUmcsin2.In which, is the amplitude of lightning shielding failure current; is conductor wave mI cZimpedance; and is the amplitude of working voltage; E(4)The influence of ground inclined angle;The variation of the height of the inner conductor and ground wire of a span to the ground.We also made study on the calculation of shielding failure flashover rate by means of a leader propagation model (LPM).However, the calculation results obtained with the conditions and parameters from different criteria of upward leader origin and development have a big difference 1011.We hold that the physical process of lightning development and the influences of multiple complicated factors are considered in the LPM in a more detailed way, with its ratio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论