2012年北京各区高三一模计算题汇编物理及答案.doc_第1页
2012年北京各区高三一模计算题汇编物理及答案.doc_第2页
2012年北京各区高三一模计算题汇编物理及答案.doc_第3页
2012年北京各区高三一模计算题汇编物理及答案.doc_第4页
2012年北京各区高三一模计算题汇编物理及答案.doc_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西城22(16分)如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相同。现在将质量m=1.0kg的小铁块(可视为质点)从弧形轨道顶端由静止释放,小铁块到达轨道底端时的速度v0=3.0m/s,最终小铁块和长木板达到共同速度。忽略长木板与地面间的摩擦。取重力加速度g=10m/s2。求(1)小铁块在弧形轨道末端时所受支持力的大小F;(2)小铁块在弧形轨道上下滑过程中克服摩擦力所做的功Wf;(3)小铁块和长木板达到的共同速度v。BA23(18分)飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析。如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的方形区域,然后到达紧靠在其右侧的探测器。已知极板a、b间的电压为U0,间距为d,极板M、N的长度和间距均为L。不计离子重力及经过a板时的初速度。(1)若M、N板间无电场和磁场,请推导出离子从a板到探测器的飞行时间t与比荷k(k=,q和m分别为离子的电荷量和质量)的关系式;(2)若在M、N间只加上偏转电压U1,请论证说明不同正离子的轨迹是否重合;(3)若在M、N间只加上垂直于纸面的匀强磁场。已知进入a、b间的正离子有一价和二价的两种,质量均为m,元电荷为e。要使所有正离子均能通过方形区域从右侧飞出,求所加磁场的磁感应强度的最大值Bm。abMP探测器L激光束NLd24(20分)如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上。以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴。圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上。在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端。已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,a. 求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;b. 通过计算,确定金属棒在全部运动过程中感应电流最大时的位置。abB(t)B(x)LL图1tt0B0OB(t)图2图3xx0B0OB(x)Ox22(16分)(1)小木块在弧形轨道末端时,满足 解得:(2)根据动能定理 解得:(3)根据动量守恒定律 解得:评分说明:本题共16分。第(1)问5分;第(2)问5分;第(3)问6分23(18分)(1)带电离子在平行板a、b间运动时,根据动能定理 解得:,即 带电离子在平行板a、b间的加速度,即 所以,带电离子在平行板a、b间的运动时间 带电离子在平行板M、N间的运动时间 所以,带电离子的全部飞行时间(2)正离子在平行板M、N间水平方向运动位移为x时,在竖直方向运动的位移为y。 水平方向满足 竖直方向满足 加速度 由上述、式得: 式是正离子的轨迹方程,与正离子的质量和电荷量均无关。所以,不同正离子的轨迹是重合的。(3)当M、N间磁感应强度大小为B时,离子做圆周运动,满足 由上述、两式,解得:带电离子的轨道半径 上式表明:在离子质量一定的情况下,离子的电荷量越大,在磁场中做圆周运动的半径越小,也就越不容易穿过方形区从右侧飞出。所以,要使所有的一价和二价正离子均能通过方形区从右侧飞出,只要二价正离子能从方形区飞出即可。当二价正离子刚好能从方形区域飞出时的磁感应强度为满足题目条件的磁感应强度的最大值。设当离子刚好通过方形区从右侧飞出时的轨道半径为R,由几何关系得解得: 将二价正离子的电量2e代入式得: 由、式得:,此值即为所求的磁感应强度的最大值Bm。 评分说明:本题共18分。第(1)问6分;第(2)问5分;第(3)问7分。24(20分)(1)由图2可知, 根据法拉第电磁感应定律,感应电动势 (2)金属棒在弧形轨道上滑行过程中,产生的焦耳热 金属棒在弧形轨道上滑行过程中,根据机械能守恒定律 金属棒在水平轨道上滑行的过程中,产生的焦耳热为,根据能量守恒定律 所以,金属棒在全部运动过程中产生的焦耳热(3)a根据图3,x=x1(x1x0)处磁场的磁感应强度。设金属棒在水平轨道上滑行时间为。由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律时间内的平均感应电动势所以,通过金属棒电荷量b. 金属棒在弧形轨道上滑行过程中,根据式, 金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,此过程中,金属棒刚进入磁场时,感应电流最大。根据式,刚进入水平轨道时,金属棒的速度所以,水平轨道上滑行过程中的最大电流若金属棒自由下落高度,经历时间,显然t0t所以,综上所述,金属棒刚进入水平轨道时,即金属棒在x= 0处,感应电流最大。评分说明:本题共20分。第(1)问4分;第(2)问6分;第(3)问10分22(16分)如图所示,一固定在地面上的金属轨道ABC,其中AB长s1=1m, BC与水平面间的夹角为=37,一小物块放在A处,小物块与轨道间的动摩擦因数均为=0.25,现在给小物块一个水平向左的初速度v0=3m/s。小物块经过B处时无机械能损失(sin37=0.6,cos37=0.8,g取10m/s2)。求: (1)小物块第一次到达B处的速度大小; (2)小物块在BC段向上运动时的加速度大小;37BACv0 (3)若小物块刚好能滑到C处,求BC长s2。23(18分)如图所示,宽为L=2m、足够长的金属导轨MN和MN放在倾角为=300的斜面上,在N和N之间连有一个1.6的电阻R。在导轨上AA处放置一根与导轨垂直、质量为m=0.8kg的金属滑杆,导轨和滑杆的电阻均不计。用轻绳通过定滑轮将电动小车与滑杆的中点相连,绳与滑杆的连线平行于斜面,开始时小车位于滑轮的正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m。在导轨的NN和OO所围的区域存在一个磁感应强度B=1.0T、方向垂直于斜面向上的匀强磁场,此区域内滑杆和导轨间的动摩擦因数为=,此区域外导轨是光滑的(取g =10m/s2)。求:(1)若电动小车沿PS以v=1.2m/s的速度匀速前进时,滑杆经d=1m的位移由AA滑到OO位置,通过电阻R的电量q为多少?滑杆通过OO位置时的速度大小为多少?(2)若滑杆运动到OO位置时绳子突然断了,设导轨足够长,求滑杆再次经过OO位置时,所受到的安培力大小?若滑杆继续下滑到AA后恰好做匀速直线运动,求从断绳到滑杆回到AA位置过程中,电阻R上产生的热量Q为多少?BAdNMORLANMO与小车相连vPSH24、(20分)如图所示,固定的半圆形绝缘光滑轨道置于正交的匀强电场和匀强磁场叠加的区域中。轨道半径为R,磁感应强度为B,方向垂直于纸面向外,电场强度为E,方向水平向左。(1)一个质量为m的小球(可视为质点)放在轨道上的C点恰好处于静止,圆弧半径OC与水平直径AD的夹角为(sin=0.8,cos=0.6)。求小球所电荷量;试说明小球带何种电荷并陈述理由。(2)如果将小球从A点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力是多少?(3) 若将小球从A点由静止释放,小球沿圆弧轨道运动到最低点时,与另一个质量也为m且静止在O点正下方P点的不带电小球(可视为质点)发生碰撞,设碰撞过程历时可以忽略且无机械能损失也无电荷转移。两小球在运动过程中始终没有脱离圆弧轨道。求第一次碰撞后到第二次碰撞前,两小球在圆弧轨道上上升的最大高度各是多少? OCEBRAD22(16分)(1)小物块从A运动到B,由动能定理代入数据解得.(6分)(2)小物块从B到C过程中,由牛顿第二定律 代入数据解得 a2=8m/s2(6分)(3)小物块以初速vB沿斜面向上运动至速度为零的过程中,经过的位移为s2,由动能定理 代入数据解得 s2=0.25m. .(4分) 23(18分)(1)滑杆由AA滑到OO的过程中切割磁感线,平均感应电动势通过电阻R的电量带入数据,可得 q=1.25C滑杆运动到OO位置时,小车通过S点时的速度为v=1.2m/s,设系绳与水平面的夹角,则 ,0可得小车的速度可视为绳端沿绳伸长方向的速度与垂直于绳长方向的速度的合速度,此时滑杆向上的速度即绳端沿绳长方向的速度: (2)滑杆运动到OO位置时绳子突然断了,滑杆将继续沿斜面上滑,由机械能守恒,可知它再通过OO的速度大小为0.72m/s,进入磁场切割磁感线,产生感应电流 受到的安培力 带入数据,可得 滑杆运动到AA位置后做匀速运动的速度设为v2,有 带入数据,可得 滑杆从OO滑到AA的过程中机械能转换成电能最终转化成电热,由功能关系有 带入数据,可得 24、(20分)qEmgOCEBRFNAD(1)小球在C点受重力、电场力和轨道的支持力处于平衡,电场力的方向一定是向左的,与电场方向相同,如图所示。因此小球带正电荷。FNcosqEFNsinmg小球带电荷量 (2)小球从A点释放后,沿圆弧轨道下滑,还受方向指向轨道的洛伦兹力F洛,力F洛随速度增大而增大,小球通过C点时速度(设为v)最大,力F洛最大,且qE和mg的合力方向沿半径OA,因此小球对轨道的压力最大。由 通过C点的速度v小球在重力、电场力、洛伦兹力和轨道对它的支持力作用下沿轨道做圆周运动,有FmgsinqEcosqvB= 最大压力等于支持力F。(3)小球1从A点滑下到达P点时速度为vp,由动能定理 可得 小球1与小球2发生无机械能损失的碰撞,碰后速度分别设为v1和v2,由动量守恒和能量关系解方程可得 v1=0,碰后小球2仍不带电,向右沿圆轨道上滑,小球2上升的最大高度设为h2,由机械能守恒定律 可得 碰后小球1质量和电量都不变,从P点开始无初速向左沿圆轨道上滑至最高点F,设AOF为,小球1上升的最大高度为h1,由动能定理 由几何关系可得 由以上两式可得 海淀图hRBA22(16分)如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过轨道最高点。已知圆形轨道的半径R=0.50m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。求:(1)A、B两滑块一起运动到圆形轨道最低点时速度的大小;(2)滑块A被弹簧弹开时的速度大小;(3)弹簧在将两滑块弹开的过程中释放的弹性势能。22(16分)(1)设滑块A和B运动到圆形轨道最低点速度为v0,对滑块A和B下滑到圆形轨道最低点的过程,根据动能定理,有(mA+mB)gh=(mA+mB)v02(2分)解得:v0=4.0m/s (2分)(2)设滑块A恰能通过圆形轨道最高点时的速度大小为v,根据牛顿第二定律有mAg=mAv2/R (2分)设滑块A在圆形轨道最低点被弹出时的速度为vA,对于滑块A从圆形轨道最低点运动到最高点的过程,根据机械能守恒定律,有 mAvA2=mAg2R+mAv2(2分)代入数据联立解得:vA=5.0 m/s(2分)(3)对于弹簧将两滑块弹开的过程,A、B两滑块所组成的系统水平方向动量守恒,设滑块B被弹出时的速度为vB,根据动量守恒定律,有(mA+mB)v0=mA vA+mB vB (2分)解得: vB=0(1分)设弹簧将两滑块弹开的过程中释放的弹性势能为Ep,对于弹开两滑块的过程,根据机械能守恒定律,有 (mA+mB)v02 + Ep=mAvA2(2分)解得:Ep=0.40J(1分)图铅盒12323(18分)某学习小组到大学的近代物理实验室参观,实验室的老师给他们提供了一张经过放射线照射的底片,底片上面记录了在同一直线上的三个曝光的痕迹,如图所示。老师告诉他们,实验时底片水平放置,第2号痕迹位置的正下方为储有放射源的铅盒的开口,放射源可放射出、三种射线。然后又提供了、三种射线的一些信息如下表。已知铅盒上的开口很小,故射线离开铅盒时的初速度方向均可视为竖直向上,射线中的粒子所受重力、空气阻力及它们之间的相互作用力均可忽略不计,不考虑粒子高速运动时的相对论效应。原子质量单位1u=1.6610-27kg,元电荷e=1.610-19C,光速c=3.0108m/s。射线类型射线性质组成质量速度电离作用穿透性射线24He4u0.1c强弱射线-10eu/1840约为c较弱较强射线光子0c弱强(1)学习过程中老师告诉同学们,可以利用三种射线在电场或磁场中的偏转情况对它们加以辨别。如果在铅盒与底片之间加有磁感应强度B=0.70T的水平匀强磁场,请你计算一下放射源射出射线在此磁场中形成的圆弧轨迹的半径为多大? (保留2位有效数字)(2)老师对如图所示的“三个曝光的痕迹”解释说,底片上三个曝光的痕迹是铅盒与底片处在同一平行于三个痕迹连线的水平匀强电场中所形成的。试分析说明,第2号痕迹是什么射线照射形成的;请说明粒子从铅盒中出来后做怎样的运动;并通过计算说明第几号曝光痕迹是由射线照射形成的。23(18分)(1)射线的粒子在匀强磁场中做匀速圆周运动,设其半径为r,根据牛顿第二定律,有 qvB=mv2/r(3分)代入数据解得: r=0.89m(2分)(2)第2号痕迹正对着储有放射源的铅盒的开口,表明形成第2号痕迹的射线做匀速直线运动,即不受电场力作用,所以不带电,故第2号痕迹是射线照射形成的。(4分)射线的粒子从放射源出来经过水平匀强电场打到底片上的过程中,受恒定的电场力作用,且水平的电场力与竖直的初速度方向垂直,故应做匀变速曲线运动。(3分)(说明:回答“类平抛运动”,或“竖直方向做匀速直线运动,水平方向做初速度为零的匀加速直线运动”均可得分)设铅盒与底片间的竖直距离为d,电场强度为E,带电射线从放射源射出时的初速度为v0,质量为m,所带电荷量为q,在电场中运动时间为t,则对于粒子在电场中的运动有竖直方向d=v0t,水平方向的侧移量x=t2 (2分)解得:x=(1分)因此对于射线和射线的侧移量之比有(2分)表明射线的偏转侧移量较小,所以第3号痕迹应是射线所形成的。(1分)说明:若没有进行定量计算,只是说明xx,此问要扣2分)v/m.s-1t/s00.42.0乙甲aBDLbcd挡板q24(20分)如图甲所示,表面绝缘、倾角q=30的斜面固定在水平地面上,斜面的顶端固定有弹性挡板,挡板垂直于斜面,并与斜面底边平行。斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上,磁场上边界到挡板的距离s=0.55m。一个质量m=0.10kg、总电阻R=0.25W的单匝矩形闭合金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m。从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,并与挡板发生碰撞,碰撞过程的时间可忽略不计,且没有机械能损失。线框向上运动过程中速度与时间的关系如图乙所示。已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数m=/3,重力加速度g取10 m/s2。(1)求线框受到的拉力F的大小;(2)求匀强磁场的磁感应强度B的大小;(3)已知线框向下运动通过磁场区域过程中的速度v随位移x的变化规律满足vv0-(式中v0为线框向下运动ab边刚进入磁场时的速度大小,x为线框ab边进入磁场后对磁场上边界的位移大小),求线框在斜面上运动的整个过程中产生的焦耳热Q。24(20分)(1)由v-t图象可知,在00.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以在此过程中的加速度 a=5.0m/s2(1分)由牛顿第二定律 F-mgsinq -m mgcosq=ma(2分)解得 F=1.5 N(1分)(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动, 产生的感应电动势 E=BLv1(1分)通过线框的电流 I= (1分)线框所受安培力 F安=BIL= (1分)对于线框匀速运动的过程,由力的平衡条件,有 F=mgsinq+mgcosq+(2分)解得 B=0.50T(1分)(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度 D=0.40m (1分)线框ab边离开磁场后做匀减速直线运动,到达档板时的位移为s-D=0.15m(1分)设线框与挡板碰撞前的速度为v2 由动能定理,有 -mg(s-D)sinq-mg(s-D)cosq=(1分)解得 v2=1.0 m/s(1分)线框碰档板后速度大小仍为v2,线框下滑过程中,由于重力沿斜面方向的分力与滑动摩擦力大小相等,即mgsin=mgcos=0.50N,因此线框与挡板碰撞后向下做匀速运动,ab边刚进入磁场时的速度为v2=1.0 m/s;进入磁场后因为又受到安培力作用而减速,做加速度逐渐变小的减速运动,设线框全部离开磁场区域时的速度为v3由vv0-得v3= v2 -=-1.0 m/s,因v30,说明线框在离开磁场前速度已经减为零,这时安培力消失,线框受力平衡,所以线框将静止在磁场中某位置。(2分)线框向上运动通过磁场区域产生的焦耳热Q1=I2Rt=0.40 J(1分)线框向下运动进入磁场的过程中产生的焦耳热Q2= =0.05 J(2分)所以Q= Q1+ Q2=0.45 J(1分)朝阳22(16分)如图所示,水平面上固定一轨道,轨道所在平面与水平面垂直,其中bcd是一段以O为圆心、半径为R的圆弧,c为最高点,弯曲段abcde光滑,水平段ef粗糙,两部分平滑连接,a、O与ef在同一水平面上。可视为质点的物块静止于a点,某时刻给物块一个水平向右的初速度,物块沿轨道经过c点时,受到的支持力大小等于其重力的倍,之后继续沿轨道滑行,最后物块停在轨道的水平部分ef上的某处。已知物块与水平轨道ef的动摩擦因数为,重力加速度为g。求:(1)物块经过c点时速度v的大小;(2)物块在a点出发时速度v0的大小;(3)物块在水平部分ef上滑行的距离x。abcdfe23(18分)如图所示,水平面上放有一长为l的绝缘材料做成的滑板,滑板的右端有一固定竖直挡板。一质量为m、电荷量为+q的小物块放在滑板的左端。已知滑板的质量为8m,小物块与板面、滑板与水平面间的摩擦均不计,滑板和小物块均处于静止状态。某时刻使整个装置处于场强为E、方向水平向右的匀强电场中,小物块与挡板第一次碰撞后的速率为碰前的。求:(1)小物块与挡板第一次碰撞前瞬间的速率v1;(2)小物块与挡板第二次碰撞前瞬间的速率v2;(3)小物体从开始运动到第二次碰撞前,电场力做的功W。m、+qEAaBP24(20分)如图所示,在坐标系xOy所在平面内有一半径为a的圆形区域,圆心坐标O1(a , 0),圆内分布有垂直xOy平面的匀强磁场。在坐标原点O处有一个放射源,放射源开口的张角为90,x轴为它的角平分线。带电粒子可以从放射源开口处在纸面内朝各个方向射出,其速率v、质量m、电荷量+q均相同。其中沿x轴正方向射出的粒子恰好从O1点的正上方的P点射出。不计带电粒子的重力,且不计带电粒子间的相互作用。(1)求圆形区域内磁感应强度的大小和方向;(2)a判断沿什么方向射入磁场的带电粒子运动的时间最长,并求最长时间;b若在ya的区域内加一沿y轴负方向的匀强电场,放射源射出的所有带电粒子运动过程中将在某一点会聚,若在该点放一回收器可将放射源射出的带电粒子全部收回,分析并说明回收器所放的位置。22(16分)解答:(1)在c点对物块受力分析,根据牛顿运动定律: (4分)(2)物块A从a到c,根据机械能守恒定律: (6分)(3)设物块A在水平轨道上滑行的距离为x,从e到f,根据动能定理: (6分)23(18分)解答:(1)对小物块,根据动能定理: (6分)(2)小物块与挡板碰撞过程动量守恒,设小物块与挡板碰撞后的速度为,所以: 依题意: 若时, 该情况不符合实际应舍去。若时, 在小物块第一次与挡板碰撞之后到第二次与挡板碰撞之前,小物块做匀减速直线运动,滑板做匀速直线运动,从第一次碰撞后到第二次碰撞前,小物块和滑板相对于地面的位移相同,固有: 解得: (6分)(3)设第一次碰撞过程中能量损失为 根据动量守恒:能量守恒定律:运算得到:第二次碰撞前瞬间:滑板速度:根据功能原理: (6分)24(20分)解答:(1)设圆形磁场区域内的磁感应强度为B,带电粒子在磁场中所受的洛伦兹力提供向心力:其中R=a则:由左手定则判断磁场方向垂直于xOy平面向里 (6分)(2)沿与x轴45向下射出的带电粒子在磁场中运动的时间最长,轨迹如图,根据几何关系粒子离开磁场时速度方向沿y轴正方向,OO3Q=135。设该带电粒子在磁场中运动的时间为t,根据圆周运动周期公式得:所以: (8分)(3)设某带电粒子从放射源射出,速度方向与x轴的夹角为,做速度v的垂线,截取OO4=a,以O4为圆心a为半径做圆交磁场边界于M点。由于圆形磁场的半径与带电粒子在磁场中运动的半径均为a,故OO1MO4构成一个菱形,所以O4M与x轴平行,因此从放射源中射出的所有带电粒子均沿y轴正方向射出。带电粒子在匀强电场中做匀减速直线运动,返回磁场时的速度与离开磁场时的速度大小相等方向相反,再进入磁场做圆周运动,圆心为O5,OO4O5N构成一平行四边形,所以粒子在磁场中两次转过的圆心角之和为180,第二次离开磁场时都经过N点。故收集器应放在N点,N点坐标为(2a,0)。 (6分) 石景山22(16分)如图甲所示,质量M=1kg的薄木板静止在水平面上,质量m=lkg的铁块静止在木板的右端,可视为质点。设最大静摩擦力等于滑动摩擦力,已知木板与水平面间的动摩擦因数1=0.05,铁块与木板之间的动摩擦因数2=0.2,取g=10ms2。现给铁块施加一个水平向左的力F。 (1)若力F恒为4N,经过时间1s,铁块运动到木板的左端,求木板的长度L; (2)若力F从零开始逐渐增加,且铁块始终在木板上没有掉下来!试通过分析与计算,在图乙中作出铁块受到的摩擦力f随力F大小变化的图象。 23(18分)在足够长的光滑固定水平杆上,套有一个质量为m=0.5kg的光滑圆环。一根长为L=lm的轻绳,一端拴在环上,另一端系着一个质量为M=2kg的木块,如图所示。现有一质量为m0= 20g的子弹以v0=1000m/s的水平速度射入木块,子弹穿出木块时的速度为u= 200m/s,子弹与木块作用的时间极短,取g=10 m/s2。求: (1)当子弹射穿木块时,轻绳的拉力大小F; (2)当子弹射穿木块后,木块向右摆动的最大高度h; (3)当木块第一次返回到最低点时,木块的速度大小vM。24(20分)电子扩束装置由电子加速器、偏转电场和偏转磁场组成。偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示。大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO射入偏转电场。当两板不带电时,这些电子通过两板之间的时间为2t0;当在两板闯加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强磁场中,最后打在竖直放置的荧光屏上。已知磁场的磁感应强度为B,电子的质量为m电荷量为e,其重力不计。 (1)求电子离开偏转电场时的位置到OO的最小距离和最大距离; (2)要使所有电子都能垂直打在荧光屏上, 求匀强磁场的水平宽度L; 求垂直打在荧光屏上的电子束的宽度y。房山ABChxRO22.(16分)在竖直平面内有一个粗糙的圆弧轨道,其半径R=0.4m,轨道的最低点距地面高度h=0.45m.一质量m=0.1kg的小滑块从轨道的最高点A由静止释放,到达最低点B时以一定的水平速度离开轨道,落地点C距轨道最低点的水平距离x=0.6m.空气阻力不计,g取10m/s2,求:(1)小滑块离开轨道时的速度大小;(2)小滑块运动到轨道最低点时,对轨道的压力大小;(3)小滑块在轨道上运动的过程中,克服摩擦力所做的功.23. U如图所示,在y轴的右侧存在磁感应强度为B的方向垂直纸面向外的匀强磁场,在x轴的上方有一平行板式加速电场。有一薄绝缘板放置在y轴处,且与纸面垂直。现有一质量为m、电荷量为q的粒子由静止经过加速电压为U的电场加速,然后以垂直于板的方向沿直线从A处穿过绝缘板,而后从x轴上的D处以与x轴负向夹角为30的方向进入第四象限,若在此时再施加一个电场可以使粒子沿直线到达y轴上的C点(C点在图上未标出)。已知OD长为l,不计粒子的重力.求:(1)粒子射入绝缘板之前的速度(2)粒子经过绝缘板时损失了多少动能(3)所加电场的电场强度和带电粒子在y周的右侧运行的总时间.24.(20分)研究物体的运动时,常常用到光电计时器.如图所示,当有不透光的物体通过光电门时,光电计时器就可以显示出物体的挡光时间.光滑水平导轨MN上放置两个物块A和B,左端挡板处有一弹射装置P,右端N处与水平传送带平滑连接,将两个宽度为d=3610-3m的遮光条分别安装在物块A和B上,且高出物块,并使遮光条在通过光电门时挡光.传送带水平部分的长度L=9.0m,沿逆时针方向以恒定速度v=6.0ms匀速转动.物块B与传送带的动摩擦因数,物块A的质量(包括遮光条)为mA =2.0 kg.开始时在A和B之间压缩一轻弹簧,锁定其处于静止状态,现解除锁定,弹开物块A和B,迅速移去轻弹簧.两物块第一次通过光电门,物块A通过计时器显示的读数t1=9.010-4s,物块B通过计时器显示的读数t2=1.810-3s,重力加速度g取10ms2,试求:(1)弹簧储存的弹性势能Ep;(2)物块B在传送带上滑行的过程中产生的内能;vABPMNQ光电门(3) 若物体B返回水平面MN后与被弹射装置P弹回的A在水平面上相碰,碰撞中没有机械能损失,则弹射装置P必须对A做多少功才能让B碰后从Q端滑出.22解:(1)小滑块离开轨道后做平抛运动,设运动时间为t,初速度为v,则(2分) (2分)解得: (2分) (2)小滑块到达轨道最低点时,受重力和轨道对它的弹力为N,根据牛顿第二定律: (3分) 解得:(1分)根据牛顿第三定律,轨道受到的压力大小(1分)(3)在滑块从轨道的最高点到最低点的过程中,根据动能定理: (3分) (1分) 所以小滑块克服摩擦力做功为0.2J。(1分)U23题()粒子在电场中加速由动能定理可知E 3分解得: 1分 ()粒子在磁场中作圆周运动轨迹如图由几何关系可得轨道半径为2l2分由分解得=分由动能定理得分代入数据解得所以损失动能为分或者 带入结果得 ()粒子若作直线运动则=Eq分代入数据解得E= 分方向与x轴正向斜向下成60角分粒子在第一象限作匀速圆周运动的时间t1=分粒子在第四象限做匀速直线运动时间t2=分粒子x轴右侧运行的总时间t=分24.(1)解除锁定,弹开物块AB后,两物体的速度大小vA=m/s, (1分) vB=m/s;(1分)由动量守恒有: mAvA=mBvB 得mB=4.0 kg (1分)弹簧储存的弹性势能J (2分) (2)B滑上传送带先向右做匀减速运动,当速度减为零时,向右滑动的距离最远。由牛顿第二定律得: 所以B的加速度:2.0m/s2B向右运动的距离:1.0m 9.0米物块将返回 1分)向右运动的时间为:.0s 传送带向左运动的距离为:6.0m (1分)B相对于传送带的位移为: (1分)物块B沿传送带向左返回时,所用时间仍然为t1,位移为x1B相对于传送带的位移为: (2分)物块B在传送带上滑行的过程中产生的内能:96J (2分)或者:(物体返回到点时所用时间,所以传送带移动距离为x=vt=m。)(3) 设弹射装置给A做功为, (2分) AB碰相碰,碰前B的速度向左为m/s ,碰后的速度设为规定向右为正方向,根据动量守恒定律和机械能守恒定律得: (2分)碰撞过程中,没有机械能损失: (2分)B要滑出平台Q端,由能量关系有:. (1分)所以,由得 84J (1分)怀柔hv1v2AB22(16分)如图所示,在水平地面上固定一个倾角=37、表面光滑的斜面体,物体A以v1=6m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出。如果当A上滑到最高点时恰好被B物体击中。若A、B均可看作质点,sin37=0.6,cos37=0.8,g取10m/s2,试求: (1)物体A上滑到最高点所用的时间t; (2)物体B抛出时的初速度v2; (3)物体A、B间初始位置的高度差h。23(18分)有一质量m=1000kg的轿车,在平直公路上以1=90km/h的速度匀速行驶,此时发动机的输出功率P=50kW,全部用于轿车的牵引。某时刻起,保持发动机的输出功率不变,启动利用电磁阻尼带动的电动机为车载蓄电池充电,轿车做减速运动。运动L=72m后,轿车速度变为2=72km/h,此过程中发动机输出功率的20%用于轿车的牵引,80%用于供给发电机工作,发电机获得能量的50%转化为蓄电池的电能。假设轿车在上述运动过程中所受阻力保持不变。(1)求轿车运动中受到的阻力F阻的大小;(2)求在上述过程中蓄电池获得的电能E电的大小;(3)若该车可以利用所储存的电能作为动力来源,则轿车仅用上述过程中获得的电能E电维持匀速运动,能行驶的距离L的大小是多少?Rh0LL2124(20分)如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5m,上方连接一个阻值R=1的定值电阻,虚线下方的区域内存在磁感应强度B=2T的匀强磁场。完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5。将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8m处由静止释放,进入磁场后恰作匀速运动。求:(1)金属杆2的质量m为多大?(2)若金属杆2从磁场边界上方h1=0.2m处由静止释放,进入磁场经过一段时间后开始匀速运动。在此过程中整个回路产生了1.4J的电热,则此过程中流过电阻R的电量q为多少?(3)金属杆2仍然从离开磁场边界h1=0.2m处由静止释放,在金属杆2进入磁场的同时由静止释放金属杆1,两金属杆运动了一段时间后均达到稳定状态,试求两根金属杆各自的最大速度。(已知两个电动势分别为E1、E2不同的电源串联时,电路中总的电动势E=E1+E2。)22(16分)解:物体A上滑过程中,由牛顿第二定律得:mgsin=ma (3分)代入数据得:a=6m/s2 设经过t时间相撞,由运动学公式: (3分)代入数据得:t=1s ( 1分) 平抛物体B的水平位移:=2.4m (3分)平抛速度:=2.4m/s (3分)物体A、B间的高度差:=6.8m (3分)23(18分)(1)1=90km/h=25m/s,2=72km/h=20m/s (4分)匀速行驶时P=F阻1,F阻= N = 2103N (4分)(2)设这一过程中汽车发动机做的总功为W,根据动能定理有: 20%W-W阻=m22-m12,代入数据得:W=1.575105J (3分) E电=50%80%W=6.3104J (2分)(3)汽车维持匀速运动,电能全部用于克服阻力做功(3分)E电=F阻L,代入数据可得L=31.5m (2分)24.(20分)解答与评分标准:(1)金属杆2进入磁场前做自由落体运动,vm=4m/s (4分)金属杆2进入磁场后受两个力平衡:mg=BIL, (3分)且E=BLvm, (2分)解出m=0.2kg (1分)(2)金属杆2从下落到再次匀速运动的过程中,能量守恒(设金属杆2在磁场内下降h2):mg(h1+h2)=+Q (2分)解出h2=1=1.3m (1分)金属杆2进入磁场到匀速运动的过程中,q= (2分)解出q=c=0.65c (1分)(3)金属杆2刚进入磁场时的速度v=2m/s (1分)释放金属杆1后,两杆受力情况相同,且都向下加速运动,合力等于零时速度即最大。mg=BIL,且, E1=BLv1,E2=BLv2 (1分)整理得到:v1+ v2=,代入数据得v1+ v2=4 m/s (1分)因为两个金属杆任何时刻受力情况相同,因此任何时刻两者的加速度也都相同,在相同时间内速度的增量也必相同,即:v1-0 =v2- v 代入数据得v2= v1+2 (2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论