万州长江大桥某标段施工组织设计_secret_第1页
万州长江大桥某标段施工组织设计_secret_第2页
万州长江大桥某标段施工组织设计_secret_第3页
万州长江大桥某标段施工组织设计_secret_第4页
万州长江大桥某标段施工组织设计_secret_第5页
已阅读5页,还剩128页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

万州长江单拱连续钢桁梁施工组织设计1.工程概况1.1.工程简介万宜铁路是“八纵八横”路网主通道之一,沿江铁路通道的组成部分,万州长江大桥是万宜铁路与达万铁路相连接的重要跨江控制节点工程,大桥位于万州市区长江上游 7km 的沱口河段,桥梁中线距上游 318 国道万州长江大桥中线约 1200m,距下游沱口水文站约 700m,大桥主孔采用 168.7+360+168.7m的单拱连续钢桁梁,左边孔采用 46.6+46+50+51.3m 预应力连续箱梁;右边孔采用 43.6+342.7+43.3m 的预应力混凝土连续箱梁,桥梁全长 1106.3m,基础分别为嵌岩扩大基础和钻孔桩基础。1.2.主要技术标准铁路等级:级正线数目:单线牵引类型:电力牵引最大限制纵坡:12最小曲线半径:1200m闭塞方式:继电半自动1.3.主要工程数量表主要工程数量见表 1.3-1。1.4.现场施工条件1.4.1.自然、地埋、水文气象条件桥址河段南起磨船背,北至江溪沟,全长约km,该段河道受区域地形地貌控制,地形起伏多变。黑盘石以上,两岸多为硬质砂主要工程数量表 1.3-1序号 项目名称 单位 数量1 区间路基土石方 百断面方 142 浆砌石 圬工方 203 明挖基础 圬工方 77074 承台 圬工方 31855 2.00m 钻孔桩 m 704.86 2.50m 钻孔桩 m 3607 墩台钢筋混凝土 圬工方 305018 连续梁钢筋(预应力)混凝土 圬工方 18839 钢桁梁 t 1101910 干砌石 m3 268011 台后及锥体渗水土 m3 100012 浆砌石挡土墙 圬工方 147013 预应力锚索 m 650014 铺轨 铺轨公里 1.14915 铺道床 m3 810岩组成的岸坡,河谷狭窄,边坡陡峭,谷底与临江谷肩高差达150250m。磨船背黄牛孔及黑盘石处,两岸石盘交错对峙,上下挑流,中枯水期河段河道宽仅 150210m,枯水期黑盘石以下河段河道宽 300400m,水流相对较平缓,洪水期的整个桥址河段是长江航道的控制河段。万州地处三峡水库中腹地带,三峡工程的最终规模是桥渡设计的控制条件。 年 6 月至 2006 年 6 月,三期围堰挡水发电期,坝前水位基本维持在 135.0m。遭遇二十年一遇洪水时,桥址蓄水回水位为 150.1m。2006 年 6 月至 2009 年为运用初期,坝前水位按 156m135m140m 运用。汛前防洪限制水位降至135.0m,此时遭遇十年一遇洪水时,桥址蓄水回水位为150.1m。桥址区属亚热带暖湿气候区,具有春早、夏热、秋雨绵绵、冬暖多雾、无霜期长、雨量充沛等特点,多年平均气温 18.1,极端最高气温 42.1,极端最底气温-3.7,多年平均降雨量1185.4mm,最大暴雨强度 197mm/h,年平均相对湿度 81%,常年主导风向为北风、西北风。一般风速在 6 级以下。根据万州龙堡气象站 24 年的风速观测资料推算出桥址区的频率设计风速为 20m/s。桥址静风频率很高,近 5 年平均为 51.56%,20 年平均为 68%,是我国静风频率较高的地区之一。万州是我国主要的酸雨区,酸雨 PH 值一般在 4 左右,最低值达 3.68,酸雨频率约占为 70%。1.4.2.工程地质条件1.4.2.1.工程地质万州地区处于四川台向斜川褶皱带东北部,由一系列微向NW 突出的背向斜组成,褶皱宽缓,断裂不发育,新构造运动以大面积间歇性隆起为特征。桥址区位于万州向斜的东南翼,且接近轴部。基岩由中生界侏罗系陆相巨厚层钙质砂岩与不等厚互层的泥质粉砂岩、粉砂质泥岩及泥钙质粉砂岩相间组成,岩层倾向 NNE、倾角 46,局部 610,层面不甚平坦,局部略有起伏,第四系不甚发育,覆盖层以新近填土、坡积块石土、碎石土为主,少量冲积砂类土。桥址区不良地质现象主要表现为陡崖巨厚层硬质砂岩的崩塌和错落,诱因是崖下软岩因风化作用及水的软化、水流冲蚀或淘浊破坏,导致上部巨厚层砂岩在重力作用下发生拉裂、蠕动,直至崩塌或错落,失稳岩体的后缘由贯穿性大的节理控制。1.4.2.2.区域地震本区所在的扬子地台四川沉降带属较稳定的地块,区内构造较简单,断裂不发育;在万州周围百公里范围内除少许一般性断裂外,无区域性大断裂存在,分布地层主要属侏罗系和三迭系内陆相砂页岩,属具塑性特征岩组;区内新构造运动不强烈,不存在活动性断裂,在国家地震局 1990 年版的地震烈度区划图上标示为度区。三峡水库有诱发地震的可能性,可能诱发地震地段为庙河至奉节库段,白帝城以上库段,诱发地震的可能性极小,可以排除,临近奉节下游可能诱发地震的库段,震级 MS4.0,烈度 Lo。1.4.3.交通道路、场地本桥位于万州城区边缘地带,距 318 国道万州长江大桥仅1.2km,两岸分别有万州至梁平公路及江东机械厂进厂公路,公路交通便利。此外万达铁路即将开通,其万州区段站距桥址仅 3km 左右,水路运输利用长江航道可直达工地。根据工程量分布,主要施工方法,工期安排及交通运输,地形条件,本桥主要施工场地位于右岸桥台以南范围布置,主场区设搅拌站,钢筋车间,木工车间,材料库等。左岸考虑与红溪沟港区建设场地存在施工干拢问题,在其场地范围外布置小规模生产区,主要有搅拌站、砂石料场、水泥库、钢筋、木工车间等,满足 05 号墩及连续梁上部结构的施工需要,此外于黑盘石上布置临时简易施工场地,主要负责 612 #墩施工的混凝土供应,根据施工进度安排,68 月汛期,该施工场地需搬迁至江东机械厂内。1.4.4.电力、通迅北岸施工用电从龙宝变电站 10kV 线路引至工地,南岸施工用电从五桥变电站 10kV 线路引至工地。万州城区通讯网络功能齐全,可就近接入移动通信网和固定电话网,满足通讯要求。1.4.5.水资源两岸生产、生活用水均从市区自来水管接入工地自建管网。1.4.6.地方材料万州地区地材资源稀少,主要分布于开县、云阳、王桥区、龙宝、双河等地,砂厂距离工地较远,最远运距达 110km,中粗砂运输采用长江水运、碎石、片石运输采用汽车运输,部分片石可利用黑盘石现场开采。1.4.7.人文环境和自然地理环境、生态环境现状万州地处长江中上游结合部、三峡库区腹地,是重庆通往长江中下游的门户,历来是渝东、陕南、鄂西、黔东北等地的物资集散地和水陆交通枢纽,万州历史悠久,人文荟萃,历史文化底蕴丰厚,民风淳朴。万州位于三峡风景区起点,自然地理环境以山水奇特著称。桥址处生态环境脆弱,因三峡工程建设需要,移民拆迁,生态环境不同程度受到破坏。2.总体施工组织布置及规划 2.1.编制依据及原则2.1.1.编制依据2.1.1.1.铁道部工程管理中心万宜铁路万州长江大桥施工招标书和万宜铁路万州长江大桥施工招标补疑、答疑资料。2.1.1.2.铁道部工程管理中心万宜铁路万州长江大桥施工招标某标段简要说明。2.1.1.3.万宜铁路万州长江大桥设计图。2.1.1.4.国家和铁道部现行有关设计、施工规范、规则、标准和定额。2.1.1.5.标前工地现场调查资料。2.1.2.编制原则2.1.2.1.完全响应招标文件的各项要求,严格按照招标文件规定的内容和格式编制。2.1.2.2.确保工程质量和施工安全生产。本桥址地形起伏大,地质复杂,航道标准高,桥型新颖且科研项目多,技术含量高。从组织机构、施工方案、机械设备、工程材料、施工条件等几个方面确保工程质量和施工安全。2.1.2.3.确保施工地段附近居民人身及房屋安全和 318 国道,长江航道畅通无阻。2.1.2.4.确保建设单位给定的总工期,根据工程特点和三峡库区水位特征,优选施工队伍和采用先进可行的施工方案。按照控制工期的重点工程和技术难点工程,分轻重缓急,合理安排施工顺序和工序衔接,注意雨季、季节蓄水对施工的不利影响,统筹兼顾,均衡生产,确保分阶段工期和总工期兑现。2.1.2.5.采用先进的施工方法和成熟工法以及新型的建筑材料。2.1.2.6.结合三峡库区移民拆迁工程,合理利用即有道路和施工场地。2.1.2.7.确保大桥建设与江溪沟港区建设相互协调,优势互补。2.1.2.8.注意环境保护和防止水土流失。2.1.3.编制范围DK9+201.00DK10+350.00 范围内的迁移电力线路、迁移通信线路、路基、桥梁下部工程、单拱连续钢桁梁、预应力砼连续箱梁、桥面系、桥梁附属工程,铺道床。2.2.施工总体布署2.2.1.施工组织管理机构及施工队伍的组成针对本工程特点和施工条件,确保施工质量、进度、安全环保等目标的全面实现,拟派具有丰富铁路桥梁施工经验并满足资格预审要求的施工队伍及技术管理人员参加本工程施工,并由此组建职能分明的,运转高效的项目经理部。项目经理部下设两个项目队,分别负责左右岸工程项目施工,组织机构详见 2.2.1组织机构框图。各主要人员与部门职责如下:项目经理:在企业法人领导下,负责本工程的全面工作,对工程质量、安全、进度、效益。做出决策并负全面责任。项目副经理:在项目经理领导下,负责指挥、组织、协调指挥部各职能部门与项目部开展工作,使项目施工有稳定而良好的秩序。总工程师:在项目经理领导下,负责本工程的全部施工技术管理工作和质量检测工作。工程技术部:负责调度、技术等工作。计划财务部:负责计划、预算、成本控制、财务、资金及其管理工作。安全质量部:负责质量、安全和防火管理工作等工作。物资机械部:负责机械设备的调拨、检修、保养,物资的采购及管理工作。工程试验室:负责原材料、新型材料的检验,工程检测、试验、计量等工作。综合办公室:负责办公室日常事务,并负责现场文明施工、环境保护、治安管理等工作。施工队伍拟抽调具有类似桥梁施工业绩、且信誉优胜的单位参加本工程施工。2.2.2.施工队伍部署项目经理部:万州城区第一项目队:长江左岸 0#台附近。第二项目队:长江右岸 12#台附近。第一项目队负责以主梁跨中分界的万州侧的全部工程,第二项目队负责以主梁跨中分界的宜昌侧的全部工程。详见图2.2 施工总平面布置图。2.3.施工准备2.3.1.临时工程2.3.1.1.施工便道、码头便道:大桥 0#台5 #墩便道一部分利用红溪沟港区道路,另一部分则根据工程需要,修建临时施工便道。大桥 6#墩12 #墩则拟修建至 6#墩及码头、黑盘石的施工便道,便道宽 6.0m。码头:拟在左右岸各设码头一座,码头设于场地标高高于133m 高程,用于材料运输及存放、钢构件的吊运。2.3.1.2.施工用电临时通讯施工用电:10kV 高压电引入工地,左右岸各设 2 台500kVA 变压器,380V 低压电接入各墩台及施工场地。临时通讯:项目经理部及项目队均在驻地附近接入电话网和移动电话网,安装程控电话,主要管理人员配置手机。项目队生产指挥配备无线对讲机。2.3.1.3.施工用水从市区自来水管网接入自建施工供水管网。2.3.1.4.驻地建设项目经理部在万州城区内租房,项目队驻地采取外租与搭建活动房屋相结合的方式。2.3.2.物资供应根据本工程的物资计划,落实物资产地、运输方式及存放地点。根据工序安排,合理组织供料计划。2.3.3.施工机械准备根据拟投入本工程的机械设备,对已落实机械设备的运转状态、技术性能做进一步检查维修,并根据工期计划分批及时运至施工现场,以满足施工需要和工期要求。2.3.4.砼搅拌站及预拼场的设置左岸设置 1 座 60m3/h 砼搅拌站,右岸设置 2 座 40m3/h 砼搅拌站,左岸混凝土搅拌站负责 0#台至 5#墩下部和上部连续箱梁砼供应,右岸混凝土搅拌站负责 6#墩至 12#台下部及上部连续箱梁混凝土供应。拟在 4#墩旁和江东机械厂内设钢桁梁预拼场。2.3.5.工地实验室工地实验室按规定要求配齐工程所需的材料检验、测试仪器设备,并配备具有相应资质的检验、测试技术人员,建立完善的检验、测试制度,组成可靠的检验、测试保证体系,为工程建设和控制工程质量提供真实、准确的数据。2.3.6.施工测量接到中标通知书后,即组织测量组进入大桥工地,进行测量交接桩和复测工作,按照铁路测量规范要求进行控制测量,形成测量成果书,报监理工程师审核并受控备案。根据测量成果书进行大桥闭合导线控制测量,根据控制测量控制点进行中线贯通测量,闭合后据以墩台放线,施工时按照直线引伸法测设中线,并以导线点座标法进行复核。根据设计院提供原始水准点建立施工控制高程网。施工中重点测量主桥单拱钢桁梁合拢控制,根据施工阶段不同不断调整测量监控手段,确保主桥合拢。2.3.7.征地拆迁根据甲方委托,负责具体办理建设用地征用、青苗树木补偿、房屋拆迁、清除地表、架空及地下障碍物等工作。临时用地本着“综合规划,节约用地”的原则,办理租用手续使用,征地拆迁过程中,积极做好与三峡工程移民拆迁与港区建设拆迁的相互协调。使用过程中注意环境保护工作。2.3.8.设计交底接到中标通知书后,即组织有关人员参加由业主主持的设计交底。接收设计资料后,复核设计文件,了解设计意图,掌握设计标准及施工注意事项。根据交底进一步勘察施工现场,详细了解本桥状况和施工环境,在此基础上编制实施性施工组织设计,上报各有关单位,经审批后组织实施。3.施工进度安排及保证工期措施3.1.工期目标本工程计划 年 12 月 1 日正式工程开工, 年 5 月 15 日竣工,总工期 29.5 个月,比业主要求工期提前 15 天。具体工期目标如下:5#8 #墩下部工程及临时支墩:开工日期 年 12 月 1 日完工日期 年 5 月 17 日0#台-4 #墩、9 #墩-12 #台下部工程开工日期: 年 12 月 1 日完工日期 年 6 月 18 日单拱连续钢桁梁:开工日期 年 3 月 11 日完工日期 年 9 月 25 日预应力砼连续箱梁:开工日期 年 3 月 26 日完工日期 年 10 月 17 日3.2.施工进度安排原则早上队伍,突出重点,优先做好 5#8 #墩的开工准备。重点突击 5#8 #墩下部工程及临时支墩施工,集中技术优势,紧抓主桥连续钢桁拱施工。3.3.各专业工程工期安排5#8 #墩下部工程及临时支墩,开工日期 年月 12 月 1 日,7#墩下部工程及附近两个临时支墩,完工日期 年 3 月 25 日。5#、6 #、8 #墩下部工程及临时支墩完工日期, 年 5 月 17 日,0#台4 #墩,9 #墩12 #台下部工程开工日期, 年 12 月 1 日,完工日期 年 6 月 18 日。单拱连续钢桁梁开工日期 年 3 月 11 日,完工日期 年 9月 25 日。预应力混凝土连续箱梁开工日期 年 3 月 26 日,完工日期 年 10 月 17 日。桥面系及铺道床开工日期 年 8 月 28日,完工日期 年 5 月 15 日。3.4.施工进度,网络图、横道进度图施工进度网络计划见图 3.4-1,横道图见图 3.4-2。3.5.保证工期措施为实现建设单位在招标文件中提出的工期目标,为此制定工期保证措施如下:3.5.1.建立强有力的高效运转指挥系统,详见图 3.5.1工期保证体系框图。3.5.1 统筹安排机械设备、材料供应、劳力调配,积极有效组织施工生产,随时掌握形象进度,发现问题及时处理。对控制工期的重点工程建立领导负责制,制定分阶段工期目标,认真落实,分解到人,对其他工程项目亦明确目标,责任到人。同时建立工期奖励制度,及时组织阶段性施工生产高潮,紧张有序、均衡持续稳定地开展施工,确保工期兑现。3.5.2.我公司已对标段作了较详细的施工调查。对施工队伍的布置安排、机械设备调迁、物资供应等作了充分的准备,一旦中标,可立即进点,迅速作好开工前的一切施工准备并能及早开工,使本标段尽快形成施工高潮。3.5.3.组织专门的征迁工作班子,积极主动配合业主完成施工管内的征迁工作,为早日顺利开工创造条件。3.5.4.对控制工期的关键工程,选择业务素质高,经验丰富、能打硬仗的精干队伍施工,保证工程按计划完成。3.5.5.按照施工组织设计的要求,配备匹配合理、完整配套、数量足够并考虑备用量的机械设备,充分利用机械设备,采取改装机械等措施,做到高效率施工,保证工程按计划完工。3.5.6.加强机械维修力量,组织抢修小组。关键机械设备严格执行维修责任制,保证运转正常。3.5.7.进一步优化施工组织设计,抓住关键工序,制定切实可靠、行之有效的措施,缩短作业时间。3.5.8.组织好砂石料的采购、运输和贮备工作,及时组织钢梁供应,保证施工用料。 3.5.9.推广新工艺、新技术、新材料的使用,缩短单项工程施工周期。3.5.10.适时组织开展劳动竞赛,充分调动职工的积极性,做到工人保班组日进度,班组保项目队旬计划,项目队保经理部月、季计划,经理部保甲方的计划按期完成。3.5.11.安排好季节性施工。寒季要加强对运输便道、便桥的维修检查,保证物资运输,减少气候、季节对施工进度的影响。3.5.12.加强与地方各级政府及港监和航道管理单位的联系和配合,密切路地关系,创造良好的外部施工环境,为顺利施工、确保工期创造有利条件。4.施工方案,技术措施,施工工艺和方法 4.1.施工总体方案钻孔桩施工采用 KPG-3000 型钻机成孔,墩身施工采用翻模施工;主桥单拱钢桁梁边跨 50m 段架设采用满堂脚手架和膺架方案,主跨架设采用爬行吊机悬臂拼装,0 #台4 #墩预应力砼连续梁采用膺架现浇方案,7 #墩12 #台预应力砼连续箱梁采用造桥机逐孔现浇。混凝土采用搅拌站集中拌制,混凝土输送泵垂直运输。4.2.路基工程本标段路基工程量很小,主要以石方开挖为主,挖方量为1200m3,填方仅 200m3。路基填方按常规方法组织施工,路堑石方开挖采取控制爆破,以确保周围建筑设施及人身安全。4.2.1.路堑石方开挖4.2.1.1 开挖原则由于本标段路堑石方量极少,且开挖深度亦浅,故采用浅孔爆破。石方爆破地段距民房及建筑物较近,且临近公路,因此施工爆破采用松动控制爆破。两侧沿设计开挖边坡线布孔,采用预裂爆破,爆后造成一条裂缝,主体开挖后顺该缝形成坡面,以保证边坡稳定、坡面平整。路堑开挖成型后,要做到路基面平顺、肩棱整齐,并按设计要求做出横向排水坡。4.2.1.2.钻爆参数选取与计算4.2.1.2.1.浅孔爆破钻孔直径 d=42mm。最小抵抗线 w=1.11.2m。台阶高 根据实际地形定,H=24m。超深 h=0.3 W=0.4m孔深 L= H+0.4孔距 a=1.21.7m排距 b=1.01.5m炸药单耗 0.4q0.45kg/m 3。硬岩取大值、软岩取小值。单孔装药量 Q=qawH4.2.1.2.2.边坡浅孔预裂爆破钻孔直径 d=42mm相邻主炮孔到预裂面的距离 w=1.2m。超深 h=0.2m孔深 L=H+h孔距 a=0.40.5m线装药量 q=0.1550.215kg/m单孔装药量 Q=qL4.2.1.3.钻孔布置及起爆网路钻孔布置由技术人员列成钻孔参数表交司钻人员,并在现场放设出炮孔位置并编号。本标段内雨水较多,为保证边坡基岩稳定,采用防水乳化炸药装药,非电毫秒雷管微差起爆方案。起爆网路设计原则为单段最大装药量引起的爆破震动不得超过边坡允许的安全震动速度。4.2.2.爆破防护:本标段路堑靠近村庄,为能保证居民的人身及财产安全,必须有效地控制飞石,根据现场具体情况,拟采用以下防护方式或结合使用。4.2.2.1.近体防护:采用直立排架,立柱用 P38 轻型轨,竹排满绑于立柱上,外侧用斜杆予以支撑稳固。4.2.2.2.覆盖防护:采用编织袋上铺加筋橡胶条编织的炮被。炮被面积 23m2,炮被与炮被间用 10 号铁丝联结。4.2.2.3.保护性防护:对于防护对象较单一时,如电线杆等,可用废旧枕木或竹排靠近被防护对象进行防护。4.2.2.4.技术措施:在重点防护地段除进行有效防护外,还拟采取以下技术措施:实施纵向松动爆破,最小抵抗线方向与线路平行。通过起爆网路改变临空面方向,达到控制飞石方向的目的。爆破作用以“松”、“裂”为爆破破碎标准,即控制爆破岩石不产生位移或产生少量位移,做到“宁松勿散”、“宁散勿飞”。4.3.桥梁工程4.3.1.桥梁工程概述万州长江大桥为万宜铁路某标段,全桥长共 1106.30m。主孔采用 168.7+360+168.7m 单拱连续钢桁梁,全长 694.7m,其中两 168.7m 边跨钢桁梁,桁高 16m;中跨 360m 为刚性钢桁拱,拱高 85m,矢跨比 1/4.2;钢桁拱肋跨中处高 8m,支点处高41m,钢拱肋上、下弦杆分别采用不同方程的二次抛物线,桥跨结构在中支点处设置有 20m 高的加劲腿。桁宽 16m,节长12m。主桁均采用拆装式节点构造。万州侧边孔主桥采用46.6+46+50+51.3m 预应力混凝土等高度连续箱梁,梁高3.6m;宜昌侧边孔主桥采用 43.6+342.7+43.3m 预应力混凝土等高度连续箱梁,梁高 3.0m。主梁均采用单箱、单室、直腹板截面,顶板宽 7.2m,顶板以下箱梁宽度为 3.0m。采用纵、竖双向预应力体系:纵向预应力束采用 j15.2 钢铰线,竖向预应力蹬筋采用 32 精轧螺纹粗钢筋。腹板束采用逐段张拉再接长的方式,顶、底板束采用一次张拉。本桥墩身均采用矩形(四角倒圆)截面,有实心墩和空心墩两种形式。1 #3 #墩为实体墩,墩高 8.7630.26m;4 #11 #墩为空心墩,墩高40.680.1m。其中 5#、6 #主墩采用矩形空心墩,单箱双室截面,其余均为单箱单室截面桥台均采用耳墙式桥台。全桥基础有明挖扩大基础和钻孔桩基两种形式。其中 0#台、1 #3 #墩、5#墩、8 #11 #墩为钻孔桩基,其余墩台均采用明挖扩大基础。5#墩采用 152.5m 群桩基础,呈纵向 3 排、横向 5 排行列式布置;其余钻孔桩径均为 2.0m。本桥计划要求工期: 年 12 月 1 日开工,到 年 5 月 15 日竣工,总工期 29.5 个月4.3.2.下部工程施工4.3.2.1.钻孔灌注桩4.3.2.1.1.施工准备4.3.2.1.1.1.场地平整进行专场平整,清除表层的软土杂物,场地处于陡坡面时,采用人工或爆破开挖平台。4.3.2.1.1.2.护筒护筒采用 =10mm 钢板卷制,内径比桩径大 2040mm,护筒埋设时高出施工地面 0.3m,埋入地表以下不小于 1.5m,地质较差时,根据需要加长护筒。4.3.2.1.1.3.泥浆在墩与墩之间设置泥浆池、沉淀池、制浆池。泥浆各项指标如下:粘土塑性指数大于 1.5,泥浆比重大于等于 1.2,粘度 1822S,含砂率小于 4%。4.3.2.1.2.钻孔钻孔桩施工时,根据现场的实际地质情况,拟采用 KPG-3000 液压型空气反循环钻机成孔、空气排碴。在覆盖层内钻孔采用翼锥形钻头,进入岩层后采用锲齿滚刀钻头。钻进时保持一定的水头高度,钻进过程中的钻压应根据不同的岩层确定,一般控制在钻具总重量扣除浮力的 80%,在开孔线有倾斜的岩层交界处采用小钻压,在覆盖层中钻进采用低速,岩层中选取中、高速。钻孔时采用两台 20m3/min 空气压缩机(风压 1.2Mpa)进行压送风,进行气举排碴。4.3.2.1.3.清孔钻进进尺达到设计标高,经复核无误后,立即进行清孔,清孔采用换桨法。清孔时钻头略微提起 20cm,转速由高变低进行空转,将孔内泥浆换出。孔内泥浆含砂率逐渐降低,直到稳定状态,满足施工规范要求。4.3.2.1.4.钢筋笼制作安装钢筋笼由生产区集中制作,运至现场后绑扎成型。钢筋的主筋与箍筋全部满焊,以保证骨架吊装时,有足够的刚度而不致松散变形。钢筋笼拟采用 32T 汽车吊整体吊放入孔。为保证钢筋的保护层厚度,每隔 2m 在同一截面上对称设置四个钢筋“耳环”,耳环采用 12 钢筋加工制作。钢筋入孔后,采用50 钢管和 16 钢筋加固,防止灌注砼时发生浮笼或掉笼事故。4.3.2.1.5.水下砼灌注水下砼施工采用竖向导管法。拟采用 250mm 导管,节间用锥形活套联结。导管标准节长 2m,底节长 5m,并配以0.5m,1.5m,1m 非标准节若干,以满足不同孔深施工需要。导管使用前进行试拼试压检验,并自上而下进行编号和标示尺度。首盘砼采用砍球法进行灌注,砼初存量满足导管埋深不小于1m。砼灌注连续进行,任何时候导管的埋深不小于 1m,一般情况下控制在 24m。砼面接近钢筋底端时放慢浇注速度,并保持导管有较大的埋深,以防钢筋上浮。为保证桩顶质量,灌注高度比设计桩顶高 0.5m 以上,并在承台开挖后凿除。砼拌制采用搅拌站集中拌制,砼运输车运输,汽车吊辅以灰斗提升灌注。水下砼的配合比严格控制,坍落应在1822cm,骨料粒径 14cm,并适当延长砼搅拌时间。钻孔桩灌注过程中,设专人测量砼面标高,计算导管埋入深度,检测砼坍落度,并作好详细记录。钻孔桩完工后,根据规范和监理工程师要求进行检测。钻孔桩施工工艺流程见图 4.3.2.1.1 钻孔桩施工工艺流程图。4.3.2.2.明挖扩大基础及承台4.3.2.2.1.明挖基础土层部分开挖拟采用履带式挖掘机开挖为主,人工刷坡为辅的方法。基础土方施工时根据不同的地质情况,按规定要进行放坡,并做好截水沟、排水沟、集水井等防排水设施,以保证基坑稳定;4.3.2.2.2.石方基础开挖拟采用浅眼松动爆破的施工方法,气腿式凿岩机打眼,挖掘机辅以人工出碴,自卸车运输;T 型挖方内轮廓线采用光面爆破技术,以控制内台边坡岩层的稳定。爆破参数及装药量根据现场试验确定。4.3.2.2.3.明挖基础基坑施工完毕后,立即报检,以便及时进行垫层和基础施工。砼由搅拌站集中搅制,砼运输车运至现场,汽车吊辅以溜槽灌注,插入式振动棒振捣,草袋覆盖,人工洒水养生。4.3.2.2.4.基础施工完毕后,及时对称分层回填,蛙式打夯机分层夯实。桩基承台施工工艺流程及明挖扩大基础施工工艺流程见图4.3.2.2.1 和图 4.3.2.2.2。 N Y N Y 4.3.2.1.1 4.3.2.2.1 4.3.2.2.2 4.3.3.墩、台身施工4.3.3.1.一般实体墩台实体墩台模板均采用厂制大块拼装无拉杆钢模板。面板采用 =6mm 冷轧钢板,支撑加固系统采用可折卸式空间桁架结构。为保证接缝密封、平顺、模板采用阴阳口设计。模板标准节长度为 4m,并根据墩身高度加工特殊节。拟根据最高实体墩墩身加工模板一套,1 #、2 #、3 #周转使用。桥台均为耳墙式,模板拟采用瑞达模板加工、方木带辅以拉杆加固,以保证砼表面平整、美观。拟采用碗扣式脚手架辅助拆立模,并兼作施工平台。钢筋由生产场区集中加工,运至工地帮扎成型;砼由搅拌站集中拌制,砼运输车运输,32T 汽车吊辅以吊斗垂直运输,机械振捣。墩身施工前,墩(台)身砼与承台结合面事先预埋接茬钢筋,人工凿毛,并用高压水冲洗干净,以保证墩(台)身过高,考虑分段浇注。每次施工前后要复测其中线跨度及支承垫石标高,施工中采取措施确保支承垫石及锚栓孔位置正确。墩台施工工艺流程见图 4.3.3.1.1。4.3.3.2.空心墩本桥 4#11#均为矩形空心墩(四周倒圆),墩高为40.6m80.1m,其中 4#、5#墩为单箱双室结构,6#11#墩为单箱单室结构。拟采用顶杆式液压平台翻模,每墩各加工一套翻模,并分别安放附着式塔吊一台,工业电梯一台。利用塔吊提升材料,工业电梯运送施工人员,混凝土泵输送混凝土。混凝土泵输送管道附在塔吊上。翻模平台上安放旋转式混凝土布料槽,工业电梯附着在墩身上,墩身作业时安放 2 根 150mm 钢管,作为电梯的临时附着点,兼作混凝土输送泵管道支架。详见图 4.3.3.2.1空心墩身施工总布置示意图。4.3.3.1.1 4.3.21 4.3.3.2.1.翻模施工方案4.3.3.2.1.1.翻模构造翻模是专门为灌注空心墩而设计的设备,总体结构上由工作平台、吊架、模板系统、中线控制系统、液压提升系统,抗风架和附属设备等七部分组成。翻模构造见图 4.3.3.2.2翻模构造示意图,其基本工作原理是:将工作平台支撑于已达一定强度的墩身砼上,并提升一定高度。平台上悬挂吊架、在吊架上进行模板的拆卸、提 4.32 升、安装、钢筋绑扎等作业。混凝土的灌筑、捣固、吊架移位和中线控制等作业则在平台上进行。模板设三层,每层高1.5m,循环交替翻升。在施工中,当第三层砼灌注筑完成后,提升工作平台,拆卸并提升第一层模板至第四层,进行安装、校正,然后灌筑混凝土,就此周而复始,直至完成整个墩身的施工。4.3.3.2.1.1.1.工作平台工作平台是砼的灌筑、捣固、吊架移位和中线控制等作业的工作场地,由辐射梁、内、中、外钢环、立杆、步板及栏杆扶手等组成。平台通过顶杆支撑于已成墩身的混凝土上。平作台拟采用重量轻、刚度大的空间桁架结构,增加平台的刚度和稳定性。4.3.3.2.1.1.2.吊架吊架拟采用活动式吊架,由内外吊架两部分组成。采用型钢焊制,并外挂密目网,作为拆装模板及砼养生的工作场地,在人力控制下可沿辐射梁移动;外吊架外侧设置栏杆,安装活动扶手,可随墩身截面缩小时的吊架内移,扶手亦逐渐向墩中心移动,减小平台的工作面积,增加平台的稳定性。4.3.3.2.1.1.3.模板系统翻模模板采用可调组合式钢板,面板由 4mm 厚钢板制作,外框采63636 角钢,竖肋采用63635 角钢和 6mm厚钢板,横肋采用 6mm 厚钢板,模板之间用螺栓连接,模板分为固定模板和抽动模板两种,其分块情况与具体尺寸根据墩身尺寸计算确定,并逐墩制定详细的模板尺寸及收分表。在外模的外侧沿模板横向设置两道围带,内模围带直接焊在模板上,用螺栓进行连接。施工时,内、外模采用拉杆形成整体。4.3.3.2.1.1.4.中线控制系统由对中装置和纠偏装置两部分组成。对中装置采用激光钻直仪,施工时置于墩底,平台下方设置接收靶,由铅直仪精确对中后,在接收靶上定出中心点,并据此调试。纠偏装置由 2根 150 钢管及倒链组成,当平台发生倾斜时,用倒链把预埋于墩身砼上的钢管与平台联为一体,拉动倒链进行纠偏。外模采用抽动模板的方式收坡,模板每翻动一次抽掉一组收坡模板,即完成模板的收坡,确保墩身外观质量。内模采用错动和抽动模板的组合形式收坡,依靠内抽动与错动模板搭接边的相互错动来达到收坡的目的,当内抽动模板全部进入搭接边后抽出。4.3.3.2.1.1.5.液压提升系统翻模的液压提升系统,由支承液压传动系统,顶杆及千斤顶组成。液压传动系统主要由能量转换装置(油泵、千斤顶)、能量控制、调节装置(各种阀门)和辅助装置(油箱、滤油器)组成。液压设备采用液压控制台集中控制。千斤顶采用 QYD-60型钢珠式液压千斤顶;顶杆采用 484 钢管,制作长度为2.54m,相邻顶杆接头错开,使在同一标高上的接头数量不超过 25%;上下顶杆采用丝扣连接。施工时,将液压千斤顶安装在平台辐射梁收坡装置上,支承杆穿过千斤顶的中心孔,通过千斤顶的提升而使整个平台向上爬行。4.3.3.2.1.1.6.抗风架抗风架采用门形结构,由型钢焊制,下端锚固在墩身预埋件上,在翻模提升过程中始终对平台进行约束。待翻模平台提升到位,翻升模板时,解除下端锚固,提升 1.5m 重新锚固在桥墩上。4.3.3.2.1.1.7.附属设备附属设备由电力与照明、通讯联络及指挥器材设备,人员运输设备、安全与消防设备及专用工具等组成。4.3.3.2.1.2.翻模施工的主要施工工艺与方法4.3.3.2.1.2.1.翻模施工翻模施工工艺流程如下:施工准备 翻模组装 校模 绑扎钢筋 灌注砼提升平台 翻模翻升(详见图 4.3.3.2.3翻模施工工艺流程图)。实施作业时,翻模翻升、绑扎钢筋、校模、灌筑砼、提升平台循环进行,直至墩顶,其间穿插平台对中调平,接长顶杆,砼养生及埋放预埋件等工作。4.3.3.2.1.2.1.1.施工准备现场准备:根据施工现场总平面布置图,清理平整场地,接通用电用水线路。保证临时道路畅通,并布置材料堆放场地和机具设备的安装位置、测量设定控制桥墩垂直度和标高的基准点。设备及物资的准备:根据翻模的设计图清点检查各零部件的规格、数量、质量及液压顶升系统的质量是否符合组装要求,并进行试转、试升,以确保翻模施工过程中液压动力设备的正常运转。同时备齐各种联接用螺栓、垫圈、螺母等标准件,并保证一定的余量。准备好液压油、润滑剂,脱模剂等专用消耗材料,备齐各种工具及电气焊设备。4.3.3.2.1.2.1.2.翻模组装组装前对各部件质量、规格进行检查,找一块离墩近且易于吊装的空旷场地、整平地面,按预排顺序组装平台,进行整体吊装就位。第一层墩身模板的安装,按模板设计图确定的模板拼装顺序,4.3.3.2.3 依据第一层组装模板的标高,据此将组装内外模板的平面位置用砂浆找平,精确测设墩位,并标示出内外模板的安设位置,据此组拼模板,校模后再进行抄平,确保第一层模板组装精度控制在以下允许误差范围。标高误差:2mm;模板结构中心线误差5mm。4.3.3.2.1.2.1.3.钢筋绑扎按图纸设计要求,布置护面钢筋。在竖直钢筋接长和绑扎过程中,不得损坏内外模板,并注意预埋件和套筒的位置。4.3.3.2.1.2.1.4.混凝土灌筑砼配料、拌合、浇灌、振捣、养护等工序专人负责,以确保混凝土质量。浇注前,要先对模板的各部位,尤其是预埋穿墙螺栓的部位进行认真检查,混凝土严格对称、分层、均匀浇注,每层厚 30mm 左右。灌注时要分层充分振捣。砼入模时,均匀倒入,不得冲击模板和平台杆件,不得溅出模板外,以免影响下部人员作业并污染环境,破坏设备的性能。4.3.3.2.1.2.1.5.平台提升每一循环中,当上层模板混凝土灌注完成后,将 50%的顶杆(间隔实施)安装接高,然后用液压千斤顶提升工作平台,并与已调整的顶杆固定,再接高调整其余顶杆,并与工作平台固定。提升的总高度以满足一节模板组装高度即可。在提升过程中,随时注意纠偏,调平,每提升一个行程即调节收坡丝杆以保持顶杆与模板坡率的基本一致。4.3.3.2.1.2.1.6.翻模的拆卸及翻升模板按抽动区为分界线为若干区域,然后对称布置倒链,此工作在最上层混凝土灌筑过程提前进行,后用挂钩吊住模板,拆除围带、拉筋等;待平台提升到位后,将最下层模板吊升至安装位置并组装好,进行安装调整。拆模时不能硬撬,拆模后要及时检查、修整,清除模板表面的灰浆圬垢,并涂刷脱模剂。安装新一层模板时,按照事先根据墩身尺寸和坡度变化列出的收分表进行收坡调整。每部分收分调整好后联为一体,并保证模板之间的联接,并用经纬仪、水准仪校正,调整模板的中心位置及标高,以中心轴线为基准,检查、调整内外模板的安装位置,以保证桥墩位置及尺寸的准确,使之符合设计要求,等检查合格后,上紧围带及拉筋,紧固各连接螺栓,即可灌注砼。4.3.3.2.1.3.高墩施工的线型控制根据桥址地形特点,为减少仪器因仰角过大造成的误差,并保证控制网破坏后可立即恢复且不影响施工,拟布设四边形控制网,采用全站仪与激光钻直仪配合使用的方法进行墩身线形控制。拟采用全站仪对控测网进行校核控测量,以提高控测网精度。4.3.3.2.1.3.1.激光铅直仪的使用使用激光铅直仪前要对其进行检验,确保仪器光束竖直。桥墩基础施工完工后,在桥墩中心及法向轴线上设置砼桩,预埋钢筋头,利用控制网和护桩精确定出墩中心及法向轴线上的两个点位,将铅直仪安置在三个点位上,然后用钢板焊一个上方能开、关的铁箱以保证仪器能发射激光束,且在施工时不被坠物砸坏,最后进行严格的整平和对中,激光铅直仪发射出的光束即为墩中心点,其任意二点的连线即为桥墩法向轴线。4.3.3.2.1.3.2.收坡控制计算出墩身不同高度的墩身尺寸,根据接收到的控制点位置,对每一层模板进行精确定位,把误差控制在允许范围之内,以保证墩身线型。4.3.3.2.1.3.3.全站仪和激光铅直仪的配合使用墩身施工时,每升高 6m,即用全站仪对铅直仪进行一次校核,具体步骤为:(参见图 4.3.3.2.4 点位示意图)3 3 1 2 2 图 4.3.3.2.4 点位示意图4.3.3.2.1.3.3.1.先由控制网用全站仪测设墩中心点 1 及轴线上两点 2、3;4.3.3.2.1.3.3.2.由激光铅直仪定出 1、2、3 点;4.3.3.2.1.3.3.3.1.2、3连线,检查是否在一条直线上;若在一条直线上,与 1、2、3 点比较,如误差在3mm 以内,以控制网为准,调整铅直仪后施工;如误差超过3mm,检查原因,直到误差允许后再进行施工。4.3.3.2.2.墩身实体段的施工4.3.3.2.2.1.下部实体段的施工:外模拟利用翻模外模。实体段立模高度具体视实体段长度而定。外模立好后,要严格检查平面尺寸及标高,并用通长拉筋和箍筋固定,防止跑模,确认各方无误后方可灌注砼。4.3.3.2.2.2.墩顶实心段利用翻模外模灌注。作业顺序如下:4.3.3.2.2.2.1.待翻模施工到上部实体段后,将内模及内吊架拆除。4.3.3.2.2.2.2.在墩内壁预埋件上(灌注空心墩墩身时提前埋入)安装牛腿支撑托架,支撑底模的纵、横梁、底模。(详见图 4.3.3.2.5 托架示意图)。4.3.3.2.2.2.3.按空心墩施工工艺翻升外模、绑扎钢筋、灌注混凝土直至墩顶。4.3.3.2.3.墩帽施工墩帽施工顺序如下:4.3.3.2.3.1.空升翻模结构,将吊架扩移到能方便安装牛腿、托架的位置。4.3.3.2.3.2.安装牛腿托架及底模板,利用翻模外模立设侧壁模板。4.3.3.2.3.3.检查调整模板中线与水平。4.3.3.2.3.4.绑扎钢筋和埋设预埋件4.3.3.2.3.5.灌注混凝土和翻升模板直至帽顶。 4.3.25 4.3.3.2.4.翻模的拆除墩帽施工完毕后,先拆除模板,后拆除吊架,然后解除平台与墩上的一切设备联系,整体吊卸平台,最后抽拔顶杆,用高标号砂浆对顶杆孔道进行压浆填塞。4.3.3.2.5.空心高墩施工技术要求及注意事项4.3.3.2.5.1.施工前做好准备,制订详细的计划安排,对操作人员进行培训。施工中建立完善的质量保证体系,对施工中各工序均严格按有关要求进行检查验收。4.3.3.2.5.2.每施工一层要进行一次中心线校正,确保墩身垂直度满足要求。4.3.3.2.5.3.施工过程中,翻模平台不宜偏斜过大,若发生偏斜采用以下措施:4.3.3.2.5.3.1.控制或停止与中线偏向相反方向的千斤顶爬升,使平台反向倾斜。4.3.3.2.5.3.2.通过埋设的抗扭装置,用倒链对拉进行纠正。4.3.3.2.5.3.3.因施工需要或其他原因,中途不能施工,采取以下措施处理:停工前,将砼摊平,振捣完毕,平台每隔1 小时提升 1 次,直至混凝土达到终凝砼,接缝按混凝土施工缝处理。再次开始施工时,对全部液压系统按规定进行运转检查,确保系统完好。4.3.4.三跨单拱连续钢桁梁施工4.3.4.1.总体方案概述4.3.4.1.1.施工步骤三跨单拱连续钢桁梁由两岸边跨端向江中主拱跨中心安装合拢。两边跨钢梁的岸端 48m 均在膺架上拼装,边跨其余部分钢桁梁采用临时支墩半悬臂拼装;主拱跨钢桁梁分别从两侧边跨接拼,采用拱上爬升吊机伸臂法拼装。主拱跨钢桁梁伸臂法拼装过程中,采取在主墩上设置 60m 高的双层固定式索塔,在A22 节点(距主墩 96m)和 A25 节点(距主墩 132m)用斜拉吊索平衡主拱跨安装时产生的倾覆力矩和调整拱度。杆件(预拼件)运送:边跨为陆上运输;主拱跨水上装船运送,在拼装点附近起吊拼装。三跨单拱连续钢桁梁安装主要施工步骤为:钢桁梁拼装准备,包括:杆件存放场和预拼场施工,运输便道和码头修建;运输设备、装船设备和吊装设备准备;钢桁梁制作运输分类存放备用;高强螺栓试验(包括:扭矩系数、摩擦系数测定等);拼装设备校定;临时墩、索塔等材料准备;施工人员培训、技术交底等。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论