




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009851Vision-Based,DistributedControlLawsforMotionCoordinationofNonholonomicRobotsNimaMoshtagh,Member,IEEE,NathanMichael,Member,IEEE,AliJadbabaie,SeniorMember,IEEE,andKostasDaniilidis,SeniorMember,IEEEAbstractInthispaper,westudytheproblemofdistributedmo-tioncoordinationamongagroupofnonholonomicgroundrobots.Wedevelopvision-basedcontrollawsforparallelandbalancedcir-cularformationsusingaconsensusapproach.Theproposedcon-trollawsaredistributedinthesensethattheyrequireinformationonlyfromneighboringrobots.Furthermore,thecontrollawsarecoordinate-freeanddonotrelyonmeasurementorcommunica-tionofheadinginformationamongneighborsbutinsteadrequiremeasurementsofbearing,opticalflow,andtimetocollision,allofwhichcanbemeasuredusingvisualsensors.Collision-avoidancecapabilitiesareaddedtotheteammembers,andtheeffectivenessofthecontrollawsaredemonstratedonagroupofmobilerobots.IndexTermsCooperativecontrol,distributedcoordination,vision-basedcontrol.I.INTRODUCTIONCOOPERATIVEcontrolofmultipleautonomousagentshasbecomeavibrantpartofroboticsandcontroltheoryresearch.Themainunderlyingthemeofthislineofresearchistoanalyzeand/orsynthesizespatiallydistributedcontrolar-chitecturesthatcanbeusedformotioncoordinationoflargegroupsofautonomousvehicles.Someofthisresearchfocussesonflockingandformationcontrol9,14,16,22,31,andsynchronization2,39,whileothersfocusonrendezvous,distributedcoverage,anddeployment1,5.Akeyassump-tionimpliedinallofthepreviousreferencesisthateachvehicleorrobot(hereaftercalledanagent)communicatesitspositionand/orvelocityinformationtoitsneighbors.Inspiredbythesocialaggregationphenomenainbirdsandfish6,30,researchersinroboticsandcontroltheoryhaveManuscriptreceivedFebruary23,2008;revisedJanuary31,2009.Firstpub-lishedJune10,2009;currentversionpublishedJuly31,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorZ.-W.LuoandEdi-torJ.-P.Laumonduponevaluationofthereviewerscomments.TheworkofA.JadbabaiewassupportedinpartbytheArmyResearchOfficeMultidisciplinaryUniversityResearchInitiative(ARO/MURI)underGrantW911NF-05-1-0381,inpartbytheOfficeofNavalResearch(ONR)/YoungIn-vestigatorProgram542371,inpartbyONRN000140610436,andinpartunderContractNSF-ECS-0347285.TheworkofK.DaniilidiswassupportedinpartunderContractNSF-IIS-0083209,inpartunderContractNSF-IIS-0121293,inpartunderContractNSF-EIA-0324977,andinpartunderContractARO/MURIDAAD19-02-1-0383.N.MoshtaghwaswiththeGeneralRobotics,Automation,Sensing,andPer-ceptionLaboratory,UniversityofPennsylvania,Philadelphia,PA19104USA.HeisnowwithScientificSystemsCompany,Inc.,Woburn,MA01801USA(e-mail:).N.Michael,A.Jadbabaie,andK.DaniilidisarewiththeGeneralRobotics,Automation,Sensing,andPerceptionLaboratory,UniversityofPennsylva-nia,Philadelphia,PA19104USA(e-mail:;;).Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineat.DigitalObjectIdentifier10.1109/TRO.2009.2022439developedtools,methods,andalgorithmsfordistributedmo-tioncoordinationofmultivehiclesystems.Twomaincollectivemotionsthatareobservedinnatureareparallelmotionandcircularmotion21.Onecaninterpretstabilizingthecircularformationasanexampleofactivityconsensus,i.e.,individualsare“movingaround”together.Stabilizingtheparallelforma-tionisanotherformofactivityconsensusinwhichindividuals“moveoff”together33.Circularformationsareobservedinfishschooling,whichisawell-studiedtopicinecologyandevolutionarybiology6.Inthispaper,wepresentasetofcontrollawsforcoordinatedmotions,suchasparallelandcircularformations,foragroupofplanaragentsusingpurelylocalinteractions.Thecontrollawsareintermsofshapevariables,suchastherelativedistancesandrelativeheadingsamongtheagents.However,theseparam-etersarenotreadilymeasurableusingsimpleandbasicsensingcapabilities.Thismotivatestherewritingofthederivedcontrollawsintermsofbiologicallymeasurableparameters.Eachagentisassumedtohaveonlymonocularvisionandisalsocapableofmeasuringbasicvisualquantities,suchasbearingangle,opti-calflow(bearingderivative),andtimetocollision.Rewritingthecontrolinputsintermsofquantitiesthatarelocallymeasurableisequivalenttoexpressingtheinputsinthelocalbodyframe.Suchachangeofcoordinatesystemfromaglobalframetoalocalframeprovidesuswithabetterintuitiononhowsimilarbehaviorsarecarriedoutinnature.Verificationofthetheorythroughmultirobotexperimentsdemonstratedtheeffectivenessofthevision-basedcontrollawstoachievethedesiredformations.Ofcourse,inreality,anyformationcontrolrequirescollisionavoidance,andindeed,collisionavoidancecannotbedonewithoutrange.Inordertoimprovetheexperimentalresults,weprovidedinteragent-collision-avoidancepropertiestotheteammembers.Inthispaper,weshowthatthetwotasksofformationkeepingandcollisionavoidancecanbedonewithdecoupledadditivetermsinthecontrollaw,wherethetermsforkeepingparallelandcircularformationsdependonlyonvisualparameters.Thispaperisorganizedasfollows.InSectionII,wereviewanumberofimportantrelatedworks.Somebackgroundinfor-mationongraphtheoryandothermathematicaltoolsusedinthispaperareprovidedinSectionIII.TheproblemstatementisgiveninSectionIV.InSectionsVandVI,wepresentthecontrollersthatstabilizeagroupofmobileagentsintoparallelandbalancedcircularformations,respectively.InSectionVII,wederivethevision-basedcontrollersthatareintermsofthevisualmeasurementsoftheneighboringagents.InSectionVIII,collision-avoidancecapabilitiesareaddedtothecontrollaws,andtheireffectivenessistestedonrealrobots.1552-3098/$26.002009IEEEAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.852IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009II.RELATEDWORKANDCONTRIBUTIONSTheprimarycontributionofthispaperisthepresentationofsimplecontrollawstoachieveparallelandcircularformationsthatrequireonlyvisualsensing,i.e.,theinputsareintermsofquantitiesthatdonotrequirecommunicationamongnearestneighbors.IncontrastwiththeworkofJusthandKrishnaprasad17,MoshtaghandJadbabaie27,Paleyetal.32,33,andSepulchreetal.35,whereitisassumedthateachagenthasaccesstothevaluesofitsneighborspositionsandvelocities,wedesigndistributedcontrollawsthatuseonlyvisualcluesfromnearestneighborstoachievemotioncoordination.Ourapproachonderivingthevision-basedcontrollawscanbeclassifiedasanimage-basedvisualseroving41.Inimage-basedvisualservoing,featuresareextractedfromimages,andthenthecontrolinputiscomputedasafunctionoftheimagefeatures.In8,12,and38,authorsuseomnidirectionalcam-erasastheonlysensorforrobots.In8and38,inputoutputfeedbacklinearizationisusedtodesigncontrollawsforleader-followingandobstacleavoidance.However,theyassumethataspecificverticalposeofanomnidirectionalcameraallowsthecomputationofbothbearinganddistance.IntheworkofPrattichizzoetal.12,thedistancemeasurementisnotused;however,theleaderusesextendedKalmanfilteringtolocalizeitsfollowers,andcomputesthecontrolinputsandguidestheformationinacentralizedfashion.Inourpaper,thecontrolar-chitectureisdistributed,andwedesigntheformationcontrollersbasedonthelocalinteractionamongtheagentssimilartothatof14and22.Furthermore,forourvision-basedcontrollers,nodistancemeasurementisrequired.In25and34,circularformationsofamultivehiclesys-temundercyclicpursuitisstudied.Theirproposedstrategyisdistributedandsimplebecauseeachagentneedstomeasuretherelativeinformationfromonlyoneotheragent.Itisalsoshownthattheformationequilibriaofthemultiagentsystemaregeneralizedpolygons.Incontrastto25,ourcontrollawisanonlinearfunctionofthebearingangles,andasaresult,oursystemconvergestoadifferentsetofstableequilibria.III.BACKGROUNDInthissection,webrieflyreviewanumberofimportantcon-ceptsregardinggraphtheoryandregularpolygonsthatweusethroughoutthispaper.A.GraphTheoryAn(undirected)graphGconsistsofavertexsetVandanedgesetE,whereanedgeisanunorderedpairofdistinctverticesinG.Ifx,yVand(x,y)E,thenxandyaresaidtobeadjacent,orneighbors,andwedenotethisbywritingxy.Thenumberofneighborsofeachvertexisitsdegree.Apathoflengthrfromvertexxtovertexyisasequenceofr+1distinctverticesthatstartwithxandendwithysuchthatconsecutiveverticesareadjacent.IfthereisapathbetweenanytwoverticesofagraphG,thenGissaidtobeconnected.TheadjacencymatrixA(G)=aijofan(undirected)graphGisasymmetricmatrixwithrowsandcolumnsindexedbytheverticesofG,suchthataij=1ifvertexiandvertexjareneighbors,andaij=0otherwise.Wealsoassumethataii=0foralli.ThedegreematrixD(G)ofagraphGisadiagonalmatrixwithrowsandcolumnsindexedbyV,inwhichthe(i,i)-entryisthedegreeofvertexi.ThesymmetricsingularmatrixdefinedasL(G)=D(G)A(G)iscalledtheLaplacianofG.TheLaplacianmatrixcapturesmanytopologicalpropertiesofthegraph.TheLaplacianLisapositive-semidefinitematrix,andthealgebraicmultiplicityofitszeroeigenvalue(i.e.,thedimensionofitskernel)isequaltothenumberofconnectedcomponentsinthegraph.Then-dimensionaleigenvectorassociatedwiththezeroeigenvalueisthevectorofones,1n=1,.,1T.Formoreinformationongraphtheory,see13.B.RegularPolygonsLetd1andnanddarecoprime,thentheedgesintersect,andthepolygonisastar.Ifnanddhaveacommonfactorl1,thenthepolygonconsistsofltraversalsofthesamepolygonwithn/lverticesandedges.Ifd=n,thepolygonn/ncorrespondstoallpointsatthesamelocation.Ifd=n/2(withneven),thenthepolygonconsistsoftwoendpointsandalinebetweenthem,withpointshavinganevenindexononeendandpointshavinganoddindexontheother.Formoreinformationonregulargraphs,see7.IV.PROBLEMSTATEMENTConsideragroupofnunit-speedplanaragents.Eachagentiscapableofsensinginformationfromitsneighbors.Theneigh-borhoodsetofagenti,thatis,Ni,isthesetofagentsthatcanbe“seen”byagenti.Theprecisemeaningof“seeing”willbeclarifiedlater.Thesizeoftheneighborhooddependsonthechar-acteristicsofthesensors.TheneighboringrelationshipbetweenagentscanbeconvenientlydescribedbyaconnectivitygraphG=(V,E,W).Definition1(Connectivitygraph):TheconnectivitygraphG=(V,E,W)isagraphconsistingof1)asetofverticesVindexedbythesetofmobileagents;2)asetofedgesE=(i,j)|i,jV,andij;3)asetofpositiveedgeweightsforeachedge(i,j).TheneighborhoodofagentiisdefinedbyNi.=j|ijVi.Letrirepresentthepositionofagenti,andletvibeitsvelocityvector.Thekinematicsofeachunit-speedagentisAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.MOSHTAGHetal.:VISION-BASED,DISTRIBUTEDCONTROLLAWSFORMOTIONCOORDINATIONOFNONHOLONOMICROBOTS853Fig.1.TrajectoryofeachagentisrepresentedbyaplanarFrenetframe.givenbyri=vivi=ivivi=ivi(1)whereviistheunitvectorperpendiculartothevelocityvectorvi(seeFig.1).Theorthogonalpairvi,viformsabodyframeforagenti.Werepresentthestackvectorofallthevelocitiesbyv=vT1,.,vTnTR2n1.Thecontrolinputforeachagentistheangularvelocityi.Sinceitisassumedthattheagentsmovewithconstantunitspeed,theforceappliedtoeachagentmustbeperpendiculartoitsvelocityvector,i.e.,theforceoneachagentisagyroscopicforce,anditdoesnotchangeitsspeed(andhence,itskineticenergy).Thus,iservesasasteeringcontrol16foreachagent.Letusformallydefinetheformationsthatwearegoingtoconsider.Definition2(Parallelformation):Theconfigurationinwhichtheheadingsofallagentsarethesameandvelocityvectorsarealignediscalledtheparallelformation.Notethatinthisdefinition,wedonotconsiderthevalueoftheagreeduponvelocitybutjustthefactthattheagreementhasbeenreached.Attheequilibrium,therelativedistancesoftheagentsdeterminetheshapeoftheformation.Anotherinterestingfamilyofformationsisthebalancedcircularformation.Definition3(Balancedcircularformation):Theconfigurationwheretheagentsaremovingonthesamecirculartrajectoryandthegeometriccenteroftheagentsisfixediscalledthebalancedcircularformation.Theshapeofsuchaformationcanberepresentedbyanappropriateregularpolygon.Inthefollowingsections,westudyeachformationanddesignitscorrespondingdistributedcontrollaw.V.PARALLELFORMATIONSOurgoalinthissectionistodesignacontrollawforeachagentsothattheheadingsofthemobileagentsreachanagree-ment,i.e.,theirvelocityvectorsarealigned,thusresultinginaswarm-likepattern.ForanarbitraryconnectivitygraphG,con-sidertheLaplacianmatrixL.We,therefore,defineameasureofmisalignmentasfollows27,35:w(v)=12summationdisplayij|vivj|2=12v,Lv(2)wherethesummationisoverallthepairs(i,j)E,andL=LI2R2n2n,withI2beingthe22identitymatrix.Thetimederivativeofw(v)isgivenbyw(v)=nsummationdisplayi=1vi,(Lv)i=nsummationdisplayi=1ivi,(Lv)iwhere(Lv)iR2isthesubvectorofLvassociatedwiththeithagent.Thus,thefollowinggradientcontrollawguaranteesthatthepotentialw(v)decreasesmonotonically:i=vi,(Lv)i=summationdisplayjNivi,vij(3)where0isthegain,andvij=vjvi.Remark1:Letirepresenttheheadingofagentiasmeasuredinafixedworldframe(seeFig.1).Theunitvelocityvectorvianditsorthogonalvectorviaregivenbyvi=cosisiniTandvi=sinicosiT.Thus,thecontrolinput(3)becomesi=summationdisplayjNisin(ij),0.(6)Thefollowingtwotheorems28presenttheresultswhenbalancedcircularformationsareattainedforagroupofunit-speedagentswithfixedconnectivitygraphs.Theorem2isforthecasewhenGisacompletegraph,andTheorem3isfortheringgraph.Theorem2:Considerasystemofnagentswithkinematics(5).GivenacompleteconnectivitygraphGandapplyingcontrollaw(6),then-agentsystem(almost)globallyasymptoticallyconvergestoabalancedcircularformation,whichisdefinedinDefinition3.Proof:See28fortheproof.squaresolidThereasonfor“almostglobal”stabilityofthesetofbal-ancedstatesisthatthereisameasure-zerosetofstateswheretheequilibriumisunstable.Thissetischaracterizedbythoseconfigurationsthatmagentsareatantipodalpositionfromtheothernmagents,where1mn/2.Next,weconsiderthesituationthattheconnectivitygraphhasaringtopologyGring.Theorem3:Considerasystemofnagentswithkinematics(5).SupposetheconnectivitygraphhastheringtopologyGringandthateachag
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西玉林市玉州区南江供销合作社招聘行政工作人员1人考前自测高频考点模拟试题及答案详解(典优)
- 2025广东惠州市惠城区纪委监委招聘编外人员4人模拟试卷及答案详解(必刷)
- 2025福建泉州市丰泽区部分公办学校专项招聘编制内新任教师17人(二)模拟试卷及完整答案详解
- 2025广东广州市白云区人民政府三元里街道办事处招聘基层公共就业创业服务岗位人员1人模拟试卷及1套参考答案详解
- 2025湖南娄底市文化旅游广电体育局所属事业单位引进高层次和急需紧缺人才组考3人考前自测高频考点模拟试题有答案详解
- 2025湖南郴州市汝城县事业单位招聘引进高层次和急需紧缺人才21人考前自测高频考点模拟试题及一套完整答案详解
- 2025年黄山屯溪区消防救援局面向社会招12人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年温州南白象街道社区卫生服务中心面向社会公开招聘1人考前自测高频考点模拟试题附答案详解
- 2025年福建省泉州市安溪龙门中学招聘1人模拟试卷完整参考答案详解
- 2025年国网陕西省电力有限公司第二批录用人选考前自测高频考点模拟试题及答案详解(名师系列)
- (2025)时事政治试题库附答案详解
- 支行日常巡检方案
- 网络安全威胁建模规范
- 2025年双鸭山宝清县公安局公开招聘留置看护队员100人工作考试考试参考试题及答案解析
- 2025年度济南市工会社会工作专业人才联合招聘(47人)笔试参考题库附答案解析
- 统编版2025-2026学年语文六年级上册第一、二单元综合测试卷(有答案)
- 2025年成考语文试卷及答案
- 2025年国企面试题型及答案
- 5年(2021-2025)高考1年模拟物理真题分类汇编专题04 机械能守恒、动量守恒及功能关系(广东专用)(解析版)
- 石刻牌坊施工方案
- T-CWAN 0166-2025 不锈钢波纹管非熔化极气体保护焊工艺规范
评论
0/150
提交评论