



全文预览已结束
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofMaterialsProcessingTechnology187188(2007)690693AdaptivesystemforelectricallydriventhermoregulationofmouldsforinjectionB.Nardina,B.Zagara,ASlovenia,Abstractditionsmeans.mouldit.wpatent.on-lineinfluencecontrol.2006ElsevierB.V.Allrightsreserved.Ksimulations1.Developmentoftechnologyofcoolingmouldsviathermo-electrical(TEM)meansderivesoutoftheindustrialpraxisandproblems,i.e.atdesign,toolmakingandexploitationoftools.Currentcoolingtechnologieshavetechnologicallimitations.Theirfinitepletelyretrollableingtechnologies.eningonlytionand1.1.prPlasticprocessingisbasedonheattransferbetweenplasticmaterialandmouldcavity.Withincalculationofheattransferoneshouldconsidertwomajorfacts:firstisallusedenergy0924-0136/$doi:limitationscanbelocatedandpredictedinadvancewithelementanalyses(FEA)simulationpackagesbutnotcom-avoided.Resultsofadiversestateoftheartanalysesvealedthatallexistingcoolingsystemsdonotprovidecon-heattransfercapabilitiesadequatetofitintodemand-technologicalwindowsofcurrentpolymerprocessingPolymerprocessingisnowadayslimited(intermofshort-theproductioncycletimeandwithinthatreducingcosts)withheatcapacitymanipulationcapabilities.Otherproduc-optimizationcapabilitiesarealreadydriventomechanicalpolymerprocessinglimitations3.Correspondingauthors.Tel.:+3863490920;fax:+38634264612.E-mailaddress:Blaz.Nardintecos.si(B.Nardin).whichisbasedonfirstlawofthermodynamicslawofenergyconservation1,secondisvelocityofheattransfer.Basictaskatheattransferanalysesistemperaturecalculationovertimeanditsdistributioninsidestudiedsystem.Thatlastdependsonvelocityofheattransferbetweenthesystemandsurroundingsandvelocityofheattransferinsidethesystem.Heattransfercanbebasedasheatconduction,convectionandradiation1.1.2.CoolingtimeCompleteinjectionmouldingprocesscyclecomprisesofmouldclosingphase,injectionofmeltintocavity,packingpres-surephaseforcompensatingshrinkageeffect,coolingphase,mouldopeningphaseandpartejectionphase.Inmostcases,thelongesttimeofallphasesdescribedaboveiscoolingtime.Coolingtimeininjectionmouldingprocessisdefinedastimeneededtocooldowntheplasticpartdowntoejectiontemperature1.seefrontmatter2006ElsevierB.V.Allrightsreserved.10.1016/j.jmatprotec.2006.11.052aTECOS,ToolandDieDevelopmentCentreofbFacultyofElectricalEngineeringOneofthebasicproblemsinthedevelopmentandproductionprocessinthemould.PrecisestudyofthermodynamicprocessesinmouldsSuchsystemupgradesconventionalcoolingsystemswithintheInthepaper,theauthorswillpresentresultsoftheresearchproject,whichThetestingstage,theprototypestageandtheindustrializationphasethermoregulationofthemouldoverthecycletimeandoverallPresentedapplicationcanpresentamilestoneinthefieldofmouldtemperatureeywords:Injectionmoulding;Mouldcooling;Thermoelectricmodules;FEMIntroduction,definitionofproblemmoulding.Glojeka,D.KrizajbKidricevaCesta25,3000Celje,Slovenia,Ljubljana,Sloveniaofmouldsforinjectionmouldingisthecontroloftemperaturecon-showed,thatheatexchangecanbemanipulatedbythermoelectricalorcanbeastandaloneapplicationforheatmanipulationwithinascarriedoutinthreephasesanditsresultsarepatentedinA6862006willbepresented.Themainresultsoftheprojectweretotalandrapidonqualityofplasticproductwithemphasisondeformationandproductqualitycontrolduringtheinjectionmouldingprocess.ThermalprocessesininjectionmouldingplasticocessingB.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693691coolingfrommouldandtemperaturefrom2.entmosti.e.lines),accumulatedtoityintoalterlikintetheerties.withatureindependentdonefromsimulation.TEM2.1.wtricalTheFig.2.TEMblockdiagram.nowneverusedintheinjectionmouldingapplications.TEMmodule(seeFig.2)isadevicecomposedofproperlyarrangedpairsofPandNtypesemiconductorsthatarepositionedbetweentwoceramicplatesformingthehotandthecoldthermoelectriccoolersites.Pounit.transferallosystem.modulesperatureheatconstanttricwithtemchannelscontrollablemouldFig.1.Mouldtemperaturevariationacrossonecycle2.Themainaimofacoolingprocessistoloweradditionaltimewhichistheoreticallyneedless;inpraxis,itextends45upto67%ofthewholecycletime1,4.Fromliteratureandexperiments1,4,itcanbeseen,thatthetemperaturehasenormousinfluenceontheejectiontimethereforethecoolingtime(costs).InjectionmouldingprocessisacyclicprocesswheremouldvariesasshowninFig.1wheretemperaturevariesaveragevaluethroughwholecycletime.CoolingtechnologyforplasticinjectionmouldsAsitwasalreadydescribed,therearealreadyseveraldiffer-technologies,enablingtheuserstocoolthemoulds5.Theconventionalisthemethodwiththedrillingtechnology,producingholesinthemould.Throughtheseholes(coolingthecoolingmediaisflowing,removingthegeneratedandheatfromthemould1,2.Itisalsoveryconvenientbuildindifferentmaterials,withdifferentthermalconductiv-withtheaimtoenhancecontrolovertemperatureconditionsthemould.Suchapproachesaresocalledpassiveapproacheswardsthemouldtemperaturecontrol.Thechallengingtaskistomakeanactivesystem,whichcanthethermalconditions,regardingtothedesiredaspects,eproductqualityorcyclestime.Oneofsuchapproachesisgratingthermalelectricalmodules(TEM),whichcanalterthermalconditionsinthemould,regardingthedesiredprop-Withsuchapproach,theonecancontroltheheattransferthetimeandspacevariable,whatmeans,thatthetemper-canberegulatedthroughouttheinjectionmouldingcycle,ofthepositioninthemould.Theheatcontrolisbythecontrolunit,wheretheinputvariablesarereceivedthemanualinputortheinputfromtheinjectionmouldingWiththeoutputvalues,thecontrolunitmonitorsthemodulebehaviour.Thermoelectricmodules(TEM)Fortheneedsofthethermalmanipulation,theTEMmoduleasintegratedintomould.Interactionbetweentheheatandelec-variablesforheatexchangeisbasedonthePeltiereffect.phenomenonofPeltiereffectiswellknown,butitwasuntilthemagnitudeandthepolarityofthesuppliedelectricApplicationformouldcoolingThemainideaoftheapplicationisinsertingTEMmodulewallsofthemouldcavityservingasaprimaryheattransferSuchbasicassemblycanbeseeninFig.3.SecondaryheatisrealizedviaconventionalfluidcoolingsystemthatwsheatflowsinandoutfrommouldcavitythermodynamicDevicepresentedinFig.3comprisesofthermoelectric(A)thatenableprimarilyheattransferfromortotem-controllablesurfaceofmouldcavity(B).Secondarytransferisenabledviacoolingchannels(C)thatdelivertemperatureconditionsinsidethemould.Thermoelec-modules(A)operateasheatpumpandassuchmanipulateheatderivedtoorfromthemouldbyfluidcoolingsys-(C).Systemforsecondaryheatmanipulationwithcoolingworkasheatexchanger.Toreduceheatcapacityofareathermalinsulation(D)isinstalledbetweenthecavity(F)andthemouldstructureplates(E).Fig.3.StructureofTEMcoolingassembly.692B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693aturesystem.inputandinformationcutionrelations.ormediacurrentofofFurthermore,filesDescribedresearchtroltheoretical,aspectoneinto3.mouldingdesigndays(Moldfloespeciallydesignerstionunreliabletion.TEM,bandsimulationsFig.5.Cross-sectionofaprototypeinFEMenvironment.3.1.Physicalmodel,FEManalysisImplementationofFEManalysesintodevelopmentprojectwasdoneduetoauthorslongexperienceswithsuchpackages4andpossibilitytoperformdifferenttestinthevirtualenvi-ronment.eninthemdeCOMSOLidenticalpossibletakingfluidphysicswimpactgoaling.temperatureFig.4.Structurefortemperaturedetectionandregulation.ThewholeapplicationconsistsofTEMmodules,atemper-sensorandanelectronicunitthatcontrolsthecompleteThesystemisdescribedinFig.4andcomprisesofanunit(inputinterface)andasupplyunit(unitforelectronicpowerelectronicsupplyHbridgeunit).Theinputandsupplyunitswiththetemperaturesensorloopareattachedtoacontrolunitthatactsasanexe-unittryingtoimposepredefinedtemperate/time/positionUsingthePeltiereffect,theunitcanbeusedforheatingcoolingpurposes.ThesecondaryheatremovalisrealizedviafluidcoolingseenasheatexchangerinFig.4.Thatunitisbasedoncoolingtechnologiesandservesasasinkorasourceaheat.Thisenablescompletecontrolofprocessesintermstemperature,timeandpositionthroughthewholecycle.itallowsvarioustemperature/time/positionpro-withinthecyclealsoforstartingandendingprocedures.technologycanbeusedforvariousindustrialandpurposeswhereprecisetemperature/time/positioncon-isrequired.ThepresentedsystemsinFigs.3and4wereanalysedfromtheaswellasthepracticalpointofview.ThetheoreticalwasanalysedbytheFEMsimulations,whilethepracticalbythedevelopmentandtheimplementationoftheprototyperealapplicationtesting.FEManalysisofmouldcoolingCurrentdevelopmentofdesigningmouldsforinjectioncomprisesofseveralphases3.Amongthemisalsoandoptimizationofacoolingsystem.Thisisnowa-performedbysimulationsusingcustomizedFEMpackagesw4)thatcanpredictcoolingsystemcapabilitiesanditsinfluenceonplastic.Withsuchsimulations,mouldgatherinformationonproductrheologyanddeforma-duetoshrinkageasellasproductiontimecycleinformation.Thisthermalinformationisusuallyaccuratebutcanstillbeincasesofinsufficientrheologicalmaterialinforma-Forthehighqualityinputforthethermalregulationofitisneededtogetapictureaboutthetemperaturedistri-utionduringthecycletimeandthroughoutthemouldsurfacethroughoutthemouldthickness.Therefore,differentprocessareneeded.WholeprototypecoolingsystemwasdesignedinFEMvironment(seeFig.5)throughwhichtemperaturedistributioneachpartofprototypecoolingsystemandcontactsbetweenwereexplored.Forsimulatingphysicalpropertiesinsideavelopedprototype,asimulationmodelwasconstructedusingMultiphysicssoftware.ResultwasaFEMmodeltorealprototype(seeFig.7)throughwhichitwastocompareandevaluateresults.FEMmodelwasexploredintermofheattransferphysicsintoaccounttwoheatsources:awaterexchangerwithphysicsandathermoelectricmodulewithheattransfer(onlyconductionandconvectionwasanalysed,radiationasignoredduetolowrelativetemperatureandthereforelowontemperature).BoundaryconditionsforFEManalysesweresetwiththetoachieveidenticalworkingconditionsasinrealtest-Surroundingairandthewaterexchangerweresetatstableof20C.Fig.6.TemperaturedistributionaccordingtoFEManalysis.B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693693atureFig.inresponsevtemperaturewhatproblemsmounting,intelligent3.2.testedtionscontrolmouldwlatedsimulatingmouldingsors,temperaturerepresentsmoulding4.nectionmilestoneincoolingapplications.Itsintroductionintomouldsforinjectionmouldingwithitsproblematiccoolingconstructionandproblematicprocessingofpreciseandhighqualityplasticpartsrepresentshighexpectations.TheauthorswereassumingthattheuseofthePeltiereffectcanbeusedforthetemperaturecontrolinmouldsforinjectionmoulding.Withtheapproachbasedonthesimulationworkandtherealproductionoflaboratoryequipmentproved,theassump-tionswereconfirmed.SimulationresultsshowedawideareaofpossibleapplicationofTEMmoduleintheinjectionmouldingprocess.Withmentionedfunctionalityofatemperatureprofileacrosscycletime,injectionmouldingprocesscanbefullycontrolled.Industrialproblems,suchasuniformcoolingofproblematicAancesolvmore,ofrefloityofproduct).icantlyTheofcontroloferances.mouldingandRefer123Fig.7.Prototypeinrealenvironment.ResultsoftheFEManalysiscanbeseeninFig.6,i.e.temper-distributionthroughthesimulationareashowninFig.5.6representssteadystateanalysiswhichwasveryaccuratecomparisontoprototypetests.Inordertosimulatethetimealsothetransientsimulationwasperformed,showingerypositiveresultsforfuturework.Itwaspossibletoachieveadifferenceof200Cinashortperiodoftime(5s),couldcauseseveralproblemsintheTEMstructure.Thoseweresolvedbyseveralsolutions,suchasadequatechoosingappropriateTEMmaterialandapplyingelectronicregulation.LaboratorytestingAsitwasalreadydescribed,theprototypewasproducedand(seeFig.7).Theresultsareshowing,thatthesetassump-wereconfirmed.WiththeTEMmoduleitispossibletothetemperaturedistributionondifferentpartsofthethroughoutthecycletime.Withthelaboratorytests,itasproven,thattheheatmanipulationcanbepracticallyregu-withTEMmodules.Thetestweremadeinthelaboratory,therealindustrialenvironment,withtheinjectionmachineKraussMaffeiKM60C,temperaturesen-infraredcamerasandtheprototypeTEMmodules.Theresponsein1.8svariedform+5upto80C,whatawideareafortheheatcontrolwithintheinjectioncycle.ConclusionsUseofthermoelectricmodulewithitsstraightforwardcon-betweentheinputandoutputrelationsrepresentsa45classsurfacesanditsconsequenceofplasticpartappear-canbesolved.Problemsoffillingthinlongwallscanbeedwithoverheatingsomesurfacesatinjectiontime.Further-withsuchapplicationcontroloverrheologicalpropertiespl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校与企业合作机制的优化路径
- 智慧城市办公楼宇的安防系统设计与实施
- 城市数字技术与文化旅游协同发展的未来趋势
- 滁州凤阳县联考2024-2025学年七年级数学第一学期期末学业水平测试试题含解析
- 餐饮行业联营合作协议范本(含品牌授权及经营管理)
- 车辆转让免责协议包含维修保养责任界定
- 2025至2030中国工业碳刷市场销售前景及未来投资价值评估报告
- 2025至2030门窗木材行业产业运行态势及投资规划深度研究报告
- 2025至2030中国美发行业发展分析及发展前景与投资报告
- 企业大型活动接待安排与管理工作指南
- 数字资产的监管框架
- DL∕T 5783-2019 水电水利地下工程地质超前预报技术规程
- 2024年中华全国律师协会招聘5人历年(高频重点复习提升训练)共500题附带答案详解
- 100MW400MWh全钒液流电池储能电站项目可行性研究报告写作模板-拿地申报
- 老版入团志愿书表格完整
- 四柱万能液压机液压系统 (1)讲解
- 档案管理借阅制度
- 思想道德与法治智慧树知到期末考试答案章节答案2024年复旦大学
- 2024届新高考物理冲刺复习:“正则动量”解决带电粒子在磁场中的运动问题
- 产品试机报告
- JJF 1184-2024热电偶检定炉温度场测试技术规范
评论
0/150
提交评论