轴套类零件加工工艺-毕业设计_第1页
轴套类零件加工工艺-毕业设计_第2页
轴套类零件加工工艺-毕业设计_第3页
轴套类零件加工工艺-毕业设计_第4页
轴套类零件加工工艺-毕业设计_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

轴套类零件加工工艺毕业设计XXX职业技术学院毕业论文题目轴套类零件的数控加工机械系机械设计及自动化专业学生姓名XXX指导教师XX起迄日期2014520146设计地点XX职业技术学院共34页XX职业技术学院学生毕业设计(论文)开题报告书共34页前言毕业设计是在学完了机械设计、机械制造工艺与夹具、机械加工工艺、计算机基础、CAD制图、等课程后,是学生全面运用所学基础理论、专业知识和基本技能,对实际问题进行研究(或设计)的综合训练,旨在培养学生的专业研究素养,提高分析结局问题的能力,使学生的创新意识和专业素质得到提升,使学生的创造性得以发挥。装备工业技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业的最基本的装备。马克思曾说过“各种经济时代的区别,不在于生产什么,而在于怎么生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方向对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造已成为世界个发达国家加速经济发展、提高综合国力和国家地位的重要途径。数控技术使用数字信息对机械运动和工作过程中进行控制技术,数控装备是以数控技术代表的新技术对传统制造和新兴制造业的渗透形成的机电一体化产品,所谓的数字化装备,其技术范围付给很多领域(1)机械制造技术(2)信息处理、加工、传输技术(3)自动控制(4)伺服驱动技术(5)传感技术(6)软件技术等。共34页目录前言3摘要5毕业设计说明书6第一章数控技术概述711数控技术的基本情况712数控技术的发展状况813数控技术的发展趋势1114数控技术发展特点12第二章结构及毛坯分析1421毛坯分析1422完整性分析1423正确性分析14第三章轴套类零件的数控加工工艺1531零件图的工艺分析1532装夹方案的确定1733确定加工顺序及走刀路线1834夹具及量具的选择21共34页35刀具的选择2236削用量的选择2437切削加工工艺与刀具卡片25第四章加工程序的编制29设计总结34致谢35参考文献36共34页绪论数控机床是用数字优化的代码将零件加工过程所需各种操作和步骤以及刀具与工件这间的相对位置,再记录在程序介质上,送入计算机或数控系统译码。其数控程序能保证加工出符合零件图样要求的合格零件。还应充分利用数控机床是用数字优化的代码将零件加工过程中所需的各种操作和步骤以数控机床的各种功能使数控机床能安全、可靠、高效地工作。一数控加工的工作原理数控加工是根据零件图样及工艺要求编制零件加工程序,再输入到机床,机床的控制系统对输入信息进行处理与运算。并不断地向直接指挥机床运动功能部件机床的伺服机构发送信号,伺服系统把来自数控装置的脉冲信号转换为机床移动部件运动。然后由传动机构驱动数控机床,机床以按给定的程序对机械零件进行加工。二数控编程及其发展1数控加工的发展数控机床和普通机床不同,数控机床其加工过程不需要人工操作,而是由给定的程序进行控制。在数控机床加工零件时,首先要分析零件图样,确定工件在机床上的加工方式,加工顺序,加工路线及刀具,夹具和切削用量的选择,然后把全部工艺过程以及其他辅助功能(主轴正反转,切削液的开与关,变速,换刀等)。按运动顺序用规定的指令代码及程序格式编制成数控加工程序,经调试后,记录在控制介质(或程序载体上),最后输入到数控装置中,从而控制数控机床完成工件的全部加工过程。这种从零件图样到编织成控制介质的过程为数控加工程序编制。2数控编程有手动编程和计算机编自动程1)手工编程是指程序编制的,整个步骤几乎全部由人工来完成的,对于几何形状不太复杂的零件,所需的加工程序太长,计算比较简单,出错的机会比较小,可用手工编程,既及时有经济,因而手工编程被广泛应用于形状简单的点位加工,非圆弧、曲线、曲面等表面。或加工程序较长时,使用手工编程将十分繁琐费时,而且容易出错,常会出现手工编程工作跟不上,数控机床加工的情况影响机床的开动率,此时必须用自动编程方法编制程序,以提高效率。2)计算机自动编程自动编程需要编程人员根据零件图样用数控语言编制一个简短的零件源程序,然后输入到计算机,计算机经过翻译处理和刀具刀具运动轨迹处理生成刀具位置数据,再经后置处理,即可生成零件的加工程序。目前是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存储的控制程序来执行对个设备的控制功能,由于采用计算机代替原先用的逻辑电路组成的数控装置,使输入的存储、处理、运算、逻辑判断等各种控制机能的实现,均用计算机软件来完成。共34页三数控加工的特点同常规加工相比,数控加工具有如下特点1自动化程度高在数控机床加工零件时,除了手工装卸工件外,全部加工过程都由机床自动完成。在柔性制造系统上、下料、检测、诊断、对刀、传输、管理等也都由机床自动完成,这样减轻操作者的劳动强度,改善了劳动条件。2加工精度高、加工质量稳定数控加工的尺寸精度通常在0005MM01MM之间,目前最高的尺寸精度可达00015MM,不受零件形状复杂度的影响,加工消除了操作者的人为误差。提高了同批零件尺寸的一致性。3加工对象的适用性强当加工对象改变时,除了相应的更换刀具和解决工件的装夹方式,只要重新编程并输入该零件的加工程序,便可自动加工出新的零件,不必对任何复杂的调整。4生产效率高一方面是自动化程序高,在一次装夹中能完成,较多表面的加工、省去了画线、多次装夹、检测等工序;另一方面是运动速度快、空间时间短、数控车床的主轴转速已经达到50007000R/MIN。5易于建立计算机通讯网络由于数控机床是使用数字信息,易于与计算机辅助设计和制造(CAD/CAM)系统联接。形成与数控机床紧密结合的一体化系统。当然,数控加工在某方面也有不足之处,就是数控机床价格昂贵、加工成本高、技术复杂、对工艺和编程要求较高、加工中难以调整、维修困难。共34页摘要数控技术是以数字量编程实现控制机械或其他设备自动工作的技术。世界经济发展的趋势表明,制造业是一个国家经济发展的基石而机械制造技术是现代化经济的重要保障。在当今世界上,高度发展的制造业和先进的制造技术已经成为衡量一个国家综合经济实力和科技水平的重要标志,成为一个国家在竞争激烈的国际市场上获胜的关键因素。在经济全球化的过程中,随着劳动和资源密集型产业向发展中国家的转移,我国真在逐步成为世界的重要基地。但是,由于我国工业进程起步较晚,与国际先进水平相比,制造业和制造技术还存在着阶段性的差跕,因此我们必须加强对制造技术的研究,大胆的进技术革新,同时积极引进和消化外来技术和理念,尽快形成我国自主创新和跨越式发展的先进技术体系。使我过的制造业立不败之地。机械加工技术在我国在我国现代的形式下还持续一段时间。机械犠緥的工艺是现代加工技术的核部分。所以研究机械加工工艺具有一定的实用性近年来,由于在机械制造领域采用了微电子、传感技术、机电一体化技等,使机械制造技术取得了长足的发展。精密和超精加工、柔性化和自动化制造、高速高效切削、智能化控制是机械制造技术发展的主要方向【关键词】轴套工艺设计加工共34页毕业设计说明一、任务零件图用数控车床完成如零件图所示零件加工,毛坯铸造件,并符合要求材料为HT200,按图样要求完成零件节点、基点、计算、设定工件坐标系,制定正确的工艺方案选择合理的刀具和切削工艺参数,编写数控加工程序。本次设计选用的机床为FANUC0I系统的数控车床。二、方案零件加工方案数车数铣插削磨削钳工三、刀具选择及工艺路线(一)工艺分析共34页如图所示零件,被加工部分的各尺寸、位置、表面粗糙度等要求较高,零件较复杂,包括了平面、槽、孔、螺纹、键槽、等要素。部分表面表面粗糙度要求较高RA16,需数控车粗车半精车精车才能达到图纸要求,若用普通设备加工就需要上磨床。RA16的孔加工则需钻扩铰工艺;通槽两壁孔位有同轴度要求,最好在开通槽前进行孔加工,若采用四轴加工中心则可分两次加工,其次有位置度、对称度、平行度、垂直度等形位公差要求较多。故这类零件非常适合数控加工。选用三爪自定心卡盘通用夹具装夹工件,1号刀为标准刀,其余各刀都按标准刀来设置刀具补偿。(二)刀具的选择选择合适的刀具和加工参数,对于金属切削加工能取到事半功倍的效果。反之,在加工中刀具选择不合理,事倍功半。第一章数控技术概况11数控机床的基本概念数控技术是数字控制(NUMERICALCONTROL)技术的简称。它采用数字化信号对被控制设备进行控制,使其产生各种规定的运动和动作。利用数控技术可以把生产过程用某中语言编写的程序来描述,将程序以数字形式送入计算机或专用的数字计算装置进行处理输出,并控制生产过程中相应的执行程序,从而使生产过程能在无人干预的情况下自动进行,实现生产过程的自动化。采用数控技术的控制系统称为数控系统(NUMERICALCONTROLSYSTEM)。根据被控对象的不同,存在多种数控系统,其中产生最早应用最广泛的是机械加工行业中的各种机床数控系统。所谓机床数控系统就是以加工机床为控制对象的数字控制系统。我国数控技术起步于1958年,在近50年发展历程大致可分为3个阶段第一阶段从1958年到1979年,即封闭式发展阶段。在此阶段,由于国外的技术封锁和我国基础条件的限制,数控技术的发展较为缓慢。第二阶段是在国家的“六五”、“七五”期间以及“八五”的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。在此阶段由于改革开放、国家的重视、研究开发环境和国际环境的改善,我国的数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。第三阶段是在国家的“八五”的后期和“九五”期间,即实施产业化的研究,进入市场竞争阶段,在此阶段我国国产数控装备的产业化取得了实质性进步。1取得的成绩纵观我国数控技术近50年的发展历程,特别是经过四个五年计划的攻关,总体来看取得了以下成绩共34页奠定了数控技术发展的基础,基本掌握了现代数控技术我国现在已基本掌握了从数控系统、伺服驱动、数控主机、专机及其配套件的基础技术,其中大部分技术已具备进行商品化开发的基础,部分技术已商品化和产业化。初步形成了数控产业基地在攻关成果和部分技术商品化的基础上,建立了诸如华中数控、航天数控等具有批量生产能力的数控系统生产厂、兰州电机厂、华中数控等一批伺服系统和伺服电机生产厂以及北京第一机床厂、济南第一机床厂等若干数控主机生产厂。这些生产厂基本形成了我国的数控产业基地。建立了一支数控研究、开发、管理人才的基本队伍。2存在的差距虽然在数控技术的研究开发以及产业化方面取得了长足的进步,但也要清醒的认识到,我国高端数控技术的研究开发,尤其是在产业化方面的技术水平与我国的现实需求还有较大的差距。虽然从纵向看我国的发展速度很快,但横向比与国外对比不仅技术水平有差距,在某些方面发展速度也有差距,即一些高精尖的技术水平差距有扩大趋势。与国外水平相比时,我国数控技术水平和产业化水平大致估计如下1技术水平比国外先进水平大约落后1015年,在高精尖技术方面则更大;2产业化水平市场占有率低,品种覆盖面小,还没有形成规模生产;功能部件专业化生产水平及成套能力较低;外观质量相对较差;可靠性不高,商品化程度不足;数控系统尚未建立自己的品牌效应,用户信心不足。3可持续发展的能力对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、制定滞后。3主要原因分析1认识方面对国产数控产业进程的艰巨性、复杂性和长期性的特点认识不足;对我国数控技术应用水平及能力分析不够。2体系方面从技术的角度关注数控产业化问题较多,从系统的、产业链的角度综合考虑数控产业化问题较少;没有建立完整的高质量的配套体系,完善的培训、服务网络等支撑体系。3机制方面人才流失,制约了技术及技术路线创新以及产品创新,也制约了规划的有效实施。4技术方面企业在技术方面自主创新能力不强,核心技术的工程化能力不强。机床标准落后,水平较低,数控系统新标准研究不够。12数控技术的发展现状20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械制造设备中的应用是世纪内制造业发展的最重大的技术进步。自从1952年美国第1台数控铣床问世至今已经历了50个年头。数控设备包括车、铣、加工中心、镗、磨、冲共34页压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有1020万台,产值上百亿美元。世界制造业在20世纪末的十几年中经历了几次反复,曾一度几乎快成为夕阳工业,所以美国人首先提出了要振兴现代制造业。90年代的全世界数控机床制造业都经过重大改组。如美国、德国等几大制造商都经过较大变动,从90年代初开始已出现明显的回升,在全世界制造业形成新的技术更新浪潮。如德国机床行业从2000年至今已接受3个月以后的订货合同,生产任务饱满。我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50,库存超过4个月。从1995年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤其是在1999年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。从2000年8月份的上海数控机床展览会和2001年4月北京国际机床展览会上,也可以看到多品种产品的繁荣景象。但也反映了下列问题(1)低技术水平的产品竞争激烈,互相靠压价促销;(2)高技术水平、全功能产品主要靠进口;(3)配套的高质量功能部件、数控系统附件主要靠进口;(4)应用技术水平较低,联网技术没有完全推广使用;(5)自行开发能力较差,相对有较高技术水平的产品主要靠引进图纸、合资生产或进口件组装。数控技术经过50年的2个阶段和6代的发展第1阶段硬件数控NC第1代1952年的电子管第2代1959年晶体管分离元件第3代1965年的小规模集成电路第2阶段软件数控CNC第4代1970年的小型计算机第5代1974年的微处理器第6代1990年基于个人PC机PCBASEO第6代的系统优点主要有共34页(1)元器件集成度高,可靠性好,性能高,可靠性已可达到5万小时以上;(2)基于PC平台,技术进步快,升级换代容易;(3)提供了开放式基础,可供利用的软、硬件资源丰富,使数控功能扩展到很宽的领域(如CAD、CAM、CAPP,连接网卡、声卡、打印机、摄影机等);(4)对数控系统生产厂来说,提供了优良的开发环境,简化了硬件。目前,国际上最大的数控系统生产厂是日本FANUC公司,1年生产5万套以上系统,占世界市场约40左右,其次是德国的西门子公司约占15以上,再次是德海德汉尔,西班牙发格,意大利菲地亚,法国的NUM,日本的三菱、安川。国产数控系统厂家主要有华中数控、北京航天机床数控集团、北京凯恩帝、北京凯奇、沈阳艺天、广州数控、南京新方达、成都广泰等,国产数控生产厂家规模都较小,年产都还没有超过300400套。近10年数控机床为适应加工技术发展,在以下几个技术领域都有巨大进步。(1)高速化由于高速加工技术普及,机床普遍提高各方面速度,车床主轴转速由30004000/MIN提高到800010000/MIN,铣床和加工中心主轴转速由40008000/MIN提高到12000/MIN、24000/MIN、40000/MIN以上快速移动速度由过去的1020/MIN提高到48/MIN、60/MIN、80/MIN、120/MIN在提高速度的同时要求提高运动部件起动的加速度,其已由过去一般机床的05G重力加速度)提高到152,最高可达15,直线电机在机床上开始使用,主轴上大量采用内装式主轴电机。(2)高精度化数控机床的定位精度已由一般的001002提高到0008左右,亚微米级机床达到00005左右,纳米级机床达到0005001,最小分辨率为1(0000001)的数控系统和机床已有产品。数控中两轴以上插补技术大大提高,纳米级插补使两轴联动出的圆弧都可以达到1的圆度,插补前多程序段预读,大大提高插补质量,并可进行自动拐角处理等。(3)复合加工、新结构机床大量出现如5轴5面体复合加工机床,5轴5联动加工各类异形零件。也派生出各新颖的机床结构,包括6轴虚拟轴机床,串并联铰链机床等。采用特殊机械结构,数控的特殊运算方式,特殊编程要求。(4)使用各种高效特殊功能的刀具使数控机床“如虎添翼”。如内冷钻头由于使高压冷却液直接冷却钻头切削刃和排除切屑,在钻深孔时大大提高效率。加工钢件切削速度能达1000/MIN,加工铝件能达5000/MIN。(5)数控机床的开放性和联网管理,已是使用数控机床的基本要求,它不仅是提高共34页数控机床开动率、生产率的必要手段,而且是企业合理化、最佳化利用这些制造手段的方法。因此,计算机集成制造、网络制造、异地诊断、虚拟制造、异行工程等等各种新技术都在数控机床基础上发展起来,这必然成为21世纪制造业发展的一个主要潮流。数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。1高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。高速、高精加工技数控机床工程流程图术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从EMO2001展会情况来看,高速加工中心进给速度可达80M/MIN,甚至更高,空运行速度可达100M/MIN左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HYPERMACH机床进给速度最大达60M/MIN,快速为100M/MIN,加速度达2G,主轴转速已达60000R/MIN。加工一薄壁飞机零件,只用30MIN,而同样的零件在一般高速铣床加工需3H,在普通铣床加工需8H;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000R/MM和1G。在加工精度方面,近10年来,普通级数控机床的加工精度已由10M提高到5M,精密级加工中心则从35M,提高到115M,并且超精密加工精度已开始进入纳米级001M。共34页在可靠性方面,国外数控装置的MTBF值已达6000H以上伺服系统的MTBF值达到30000H以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。1、4数控技术的发展特点1广泛地应用微机资源近年来被称为个人计算机(PC)的微型计算机发展很快,大规模集成电路制造技术的高速发速,使得PC的硬件结构做得很小。主CPU的运行速度越来越高。IPC386的主频是33MHZ,IPC486、586的主频可达50120MHZ,新近INTEL奔腾处理器(PENTIUM),主频已达450MHZ。存储器容量也很大,体积很小,由于是大批量生产,使成本下降,可靠性提高。在软件方面,操作系统的发展,特别是WINDOWS的应用,使得PC的操作更为简便直观。CAD/CAM的软件大量地由小型机、工作站向PC移植,三维图显示及工艺数据库在PC上建立。再加上PC的开放性,吸引大量技术人员投入了软件的开发,使得PC的软件资源极为丰富。因此,更好地利用PC的软、硬件资源,就成为各国数控设备生产厂发展CNC系统十分重要的一种方法。19921993年,首先是在美国及欧洲的一些小型的数控设备厂推出,例如美国的ANILAN公司推出的1100、1200、1400系列,意大利FIDIA公司的10/20/30系列,都采用了PC作为基板来开发自己的数控系统。现在连日本FANUC、三菱公司,德国的SIEMENS公司这些以生产专用CNC设备著称的公司,也都把采用PC资源,作为其发展的一个重要方向。他们都强调自己系统的“开放”。日本FANUC公司把采用PC的CNC系统称之为开放型CNC系统,有150、160、180及210等系列,并正发展一种将FANUC智能终端(一种与IBMPC兼容的平板式计算机)通过高速光缆与CNC装置连接的模式。我国中国珠峰数控公司“八五”攻关成果“中华型(CME988)”也采用PC作为主控板,使该系统能充分利用PC的资源,跟随PC的发展而升级。2小型化以满足机电一体化的要求。随着微电子技术的发展,大规模集成电路的集成度越来越高,体积越来越小。数控设备厂采用超大规模集成电路并采用表面安装工艺(SMT),实现了三维立体装配,将整个CNC装置做得很小,以适应机械制造业机电一体化的要求。日本三菱电机株式会社,最近推出的普及型CNCMELDAS50系列及实用型CNCMELDAS520A系列,这两个系列都采用了32位RISC微处理器,实现超小型化的CNC装置,较原来的M310及L3、L3A,体积大为减小(H168MMW76MMD135MM),安装面积减小了一半,功能还有所提高。采用了超薄型显示器(95IN的EL及104IN的彩色LCD)。这个系统的微小线段加工能力提升至64M/MIN,最大快速进给速度为240M/MIN,其同步攻螺纹精度较M310提高了3倍,主轴定位时间缩短了30。3改善人机接口,方便用户使用为了使操作者能很容易地掌握数控机床的操作,数控设备生产厂努力地改善人机接口,简化编程,尽量采用对话方式,使用户使用方便,如西班牙FAGOR公司生产的FAGOR共34页8050系列,采用交互式编辑程序指导系统,简化程序的编辑,用简要的表格编辑程序,利用蓝图建立程序。其8050TC型数控系统,被称为高档傻瓜式数控系统(FAGOR800系列CNC系统),其操作面板使用了符号键,用户可以根据所需加工零件,选择加工程序,输入图形数据后,即可实现半自动或全自动加工。如果面板上的各种自动操作都没有被选上,则该CNC系统只显示坐标轴的位置值和主轴转速,操作者可以用摇柄或电子手轮对机床的各个轴进行手动操作,使用极为方便。4提高数控系统产品的成套性数控系统包括CNC装置、主轴及进给伺服驱动装置,以及主轴电动机、进给电动机和与其相关的检测反馈元件。一个数控系统性能的好坏是与上述各个环节的性能密切相关的。为了满足机床用户厂的需要,数控设备生产厂都非常重视数控产品的成套性,使系统的各个环节都能很好地匹配,使用户获得最好的使用效果。5研究开发智能型数控系统所谓智能型的数控系统,早在80年代初期已经开始研究。当时FANUC公司推出的FS15系列,就称之为AI(人工智能)CNC系统,主要是在故障诊断方面采用了专家系统。系统利用所谓的推理软件,根据存储在系统中的知识库的经验,分析及查找故障原因。最近FANUC公司又在开展被称为面向21世纪的课题IMS(INTELLIGENTMANUFACTURINGSYSTEMS),将无缝地(SEAMLESS)把世界范围熟练工人的技术窍门(KNOWHOW)组合进行生产系统中去。随着工业技术发展,要求制造过程更快、更容易,以适应生产需要,一种被称为智能闭环加工(INTELLIGENTCLOSEDLOOPPROCESSESICLP)技术被采用。这种技术是利用传感器获得适时的信息,以增强制造者取得最佳产品的能力。6根据市场需要,开发适销对路的数控产品高新技术是数控系统发展的一个方向,另一方面开发适销对路的数控产品也是适应市场发展的需要。我国是发展中国家,经济型数控系统在我国有着广阔的市场。因此,开发性能优良、价钱便宜的数控系统,满足我国市场需要是很有意义的。目前,我国的经济型数控机床每年需要量约为800010000台。虽然有几十个厂家在生产,价格也很便宜,但是多年来技术发展不快,性能及可靠性方面还存在一些问题,不能满足市场的需求。德国SIEMENS公司在我国建立的合资企业西门子数控(南京)有限公司,在1997年推出了SINUMERIK802S。这种系统除采用G代码编程外,还有图形循环支持功能,通过软件键来进行转换。采用1524CM(6IN)彩色液晶显示,并采用两台步进电动机作为驱动单元,驱动力矩为3512NM,价格在3万元左右。这是西门子公司为占领中国市场所做的努力。7开发新的数控产品随着机械加工技术的发展,对数控机床的性能要求越来越高,迫切地需要开发一些新的机电一体化数控产品来适应及满足这些要求。共34页例如,铝合金材料的大量采用,要求进行高速切削,以实现高的精度及低的表面粗糙度的要求,数控车床及加工中心主轴转速要求提高到1000020000R/MIN,这对采用传统的机械传动是很难实现的。因此,将电动机的电枢直接与机床的主轴做成一体的“电动主轴”,就成为生产中急需的产品。目前,日本的FANUC公司、NSK公司,瑞士的IBAG公司,意大利的GANFIOR公司都在开发生产这种新产品。同样,为了实现高速移动,要求开发“直线电动机”,用以直接带同样,为了实现高速移动,要求开发“直线电动机”,用以直接带动工作台直线运动。日本FANUC公司生产的直线电动机,移动速度可以达到100M/MIN。日本的THK公司,德国的INDRAMAT公司、SIEMENS公司都在开发及生产这类产品。综上所述,数控技术的发展是与现代计算机技术、电子技术发展同步的,同时也是根据生产发展的需要而发展的。现在数控技术已经成熟,发展将更深更广更快。未来的CNC系统将会使机械更好用,更便宜。第二章结构及毛坯分析21毛坯分析毛坯外形尺寸符合要求,且材料为铸造件,并符合尺寸与表面粗糙度值要求材料为HT20022完整性分析轴套类零件比轴类零件复杂,不是紧用车床就能加工,加工难度较大,且零件的形位公差要求较多,装夹方式均可采用三抓卡盘进行装夹定位,由于零件形状复杂一般采用铸造件。是数控加工中的典型类别。用于承担扭曲和弯曲力,承担来自各方面的力,所以要求有足够的刚性、耐磨、抗震等。就本设计中的轴套零件而言,零件的完整性是可以肯定的,包括了零件的材料及完整的零件图(完整的零件尺寸和技术要求),表面粗糙度要求,形位公差要求等。有了完整的零件图及要求,我们才能采用合适的设备加工出完整可用的零件。否则我们的加工就没有意义了。23正确性分析零件加工到成品时其要达到预期效果。而往往因为各方面的原因,零件的精度受到影响,所以零件的正确性在各因素条件都达到的时候才能做到。通过工艺调整使零件达到工艺要求是设计内容的重要组成部分。共34页主要分析了零件的尺寸是否合适,能否在我们现有设备行程内加工;其次是分析零件材料的正确性,零件的材料决定了我们选用设备的功率,设备的刚性以及我们所使用的刀具和工艺参数等;在此我们分析了零件的技术要求及行为公差、尺寸公差要求,以方便我们工艺方案的确定,以及工艺参数的选用。最后零件的表面粗糙度也要分析,这样我们才能正确的选用刀具及工艺参数和工艺方案。第三章轴套类零件的数控加工工艺31零件图的工艺分析一结构工艺分析从零件结构上看,该零件由外圆柱面、平面、圆弧、螺纹、键槽等表面所组成,轴套类零件较复杂,都适合车削加工。另外,该零件的尺寸标注完整,轮廓描述清楚,且尺寸标注都有利于定位基准和编程原点的统一,符合数控加工尺寸标注的要求。二精度及技术要求分析共34页1尺寸精度从尺寸上看,此零件85MM、80MM、210H7、10、通槽20H8等五处加工精度要求较高,其轴、孔有较高的配合精度要求,都需仔细对刀和认真调整机床。两处配合外圆和几处配合孔的表面粗糙度要求较高,需注意选用刀具及合适的工艺参数。2外置精度该零件的外置精度要求较多,分别有1、20H8的中心要素关于70的中心要素的对称度要求为005MM2、255H10的中心要素同轴度要求002MM切相对于20H8通槽的壁垂直度要求01MM3、键槽尺寸8的两壁面平行度要求005MM4、85MM、80MM外圆面相对于70中心要素的跳动量小于002MM5、3孔相对于基准DCK位置度小于01MM6、尺寸39处端面相对于基准C跳动量小于002MM,上端面相对于H002MM,70相对于B005MM。3)表面粗糙度两处配合外圆和几处配合孔的表面粗糙度要求较高RA16,需注意选用刀具及合适的工艺参数。其余有五处RA32的粗糙度要求,RA32可直接用铣达到要求。其余要求为RA63,对于数控加工来说算是要求较低的,没有挑战,随便保证。三毛坯的确定由于该零件精度较高,零件外形较为复杂,且零件材料为HT200故采用铸造件,毛坯结构复杂,材料的加工性能较好。其毛坯外形尺寸为143MM124MM的铸件。由于零件毛坯是铸造件,故改零件在机械加工前应有时效热处理,去除材料在铸造过程中的内应力,减少零件在加工过程中应力释放产生的变形,影响加工精度。综上所述采取以下几点工艺措施1零件图样上有几处配合尺寸其公差值较小,故编程时不能要采用平均值,而全部需尺寸换算按实际尺寸的中值进行编程加工,刀具半径补偿值必须用对刀仪测量好。33装夹方案的确定铣键槽夹具模型如图次工序可在普通铣床上完成,此夹具设计初衷是由于键槽加工必须放在车数铣工序之后,等有了精基准之后才能完成的,但是键槽的铣削过程并不复杂,和键槽的要求也不是太高,所以设计出一套夹具在普通铣床上就能完成其加工,这样既经济也提高了工作效率。挡板为轴向定位,V形块为径向定位,通槽定位块为角度定位。这样在普通设备上就能方便快捷的进行键槽的加工了。对刀能在中间的小方块上完成。共34页一零件的装夹本零件毛坯为铸造件,用三爪自定心卡盘夹紧加工出右端面内外轮廓,左端外圆表面不加工,且零件右端外圆表面有较高的尺寸精度,故在第一次装夹中应打表找正,尽量保证零件外圆跳动能在01MM以内。共34页第一次装夹掉头后装夹,数铣加工螺纹孔和10MM配合孔氏也采用这种装夹方式共34页铣通槽及台阶孔的装夹方案如下图铣键槽装夹方案共34页插花键槽装夹方案34确定加工顺序及走刀路线数控加工中,进给路线对零件的加工精度,表面质量以及加工效率有着直接影响。因此,确定好的进给路线是保证数控加工精度、表面质量、提高效率的工艺措施之一,其确定与工件表面状况要求的零件表面质量、机床进给机构间隙,刀具耐用度以及零件轮廓形状有关。由于该零件较复杂,加工部位较多,因而需采用多把刀具才能完成切削加工,制定零件数控加工顺序时可按有粗到精,由近到远,内外交叉,刀具集中的原则确定,尽可能在一次装夹中加工出较多的工件表面。零件具体的加工顺序和进给路线确定如下一套筒零件的加工顺序及进给路线说明在接下来的加工顺序及进给线路的确定中表一把刀具完成的,且刀具号从一号开始依次递增,如用黄色标记的面刀具和四号刀具补偿完成的加工。且加工顺序分别从一号刀开始递增。共34页相同颜色代表示都是用4号1、2、共34页3、4、5、铣键槽6、插花槽共34页35夹具及量具的选择1)夹具的选择在零件工艺分析中,已确定零件机床加工部分和加工时用的定位基准只需适合的夹具即可,这里选用的三爪自定心卡盘(如下图)。2)量具的选择量具的选择应考虑与被测工件的外形,位置,被测尺寸的大小,尺寸公差相适应,每份量具一把(或一套)其选择如下游标卡尺(0150MM)测量具轮廓的基本尺寸。外径千分尺(75100MM,)测量凸台的基本尺寸。内径千分尺(2550MM,5075MM测量孔的直径。36刀具的选择刀具的选择是数控加工工艺设计中的重要内容之一,刀具选择合理与否不仅影响机床的加工效率,而且还直接影响加工质量。1钻孔的刀具钻孔的刀具较多,有普通麻花钻,可转位浅孔钻及扁钻。应根据工件材料,加工尺寸及加工质量要求等合理选用。在数控车床上钻孔,大多采用麻花钻,麻花钻有高速钢和硬质合金钢两种。这里选用中心钻直径5MM的中心钻。钻头95MM,5MM,3MM,102MM麻花钻。共34页2粗车外圆刀90O硬质合金外圆车刀,刀尖圆弧半径02MM。3切刀宽3MM宽5MM内切槽刀。镗刀的种类很多。按切削刃数量可分为単刃镗刀和双刃镗刀。单刃镗刀刚性差,切削时易引起振动,所以镗刀的主偏角选得较大,以减小径向力。粗镗钢件孔时KR60O75O,以提高刀具的耐用度。单刃镗刀结构简单,适应较广,粗精加工都适用。故选用单刃镗刀,粗精镗内孔表面。刀片55O带R02MM圆弧刃的菱形刀片,如图95铣刀16MM硬质合金铣刀,8MM键槽铣刀6插刀37切削用量的选择数控加工中的切削用量包括背吃刀量,切削速度(主轴转速),进给速度或进给量。切削用量的大小对切削力,切削功率,刀具磨损,加工质量和加工成本均有显著影响,对不同的加工方法,需选择不同的切削用量,并编入程序中。切削用量的选择原则粗加工时一般以提高生产效率为主,但也考虑经济型和加工成本,半精加工和精加工时应在保证该加工质量的前提下兼顾切削效率,经济型和加工成本具体参数根据机床说明书和切削用量手册。共34页一背吃刀量背吃刀量的选择主要由于对表面质量的要求来决定。在工艺系统刚性及机床允许的条件下,进可能选取较大的背吃刀量,由于该零件精度要求较高,则应适当留出精车余量,常取0105MM。背吃刀量的选取参数如下1粗车外圆时取12MM。2精车镗内外表面时取05MM。3粗镗内孔取1MM。4钻中心孔取25MM。5钻孔时取10MM。6铣刀粗加工3MM精加工留05MM7键槽铣刀10MM二切削速度切削速度根据零件上被加工部位的直径值,并按连接和刀具的材料及加工性质等条件所允许的切削速度来确定。选取数值如下1粗车镗内外表面时主轴转速S600R/MINF02MM/R。2钻中心孔时主轴转速S600R/MIN。3钻孔时的主轴转速S300R/MIN。4精车外圆时的主轴转速S1100R/MINF01MM/R。5精镗内孔时的主轴转速S800R/MINF01MM/R。6切槽时的主轴转速S500R/MINF15MM/R。7内外螺纹车削时的主轴转速由公式N1200/PK得N1200/1580720R/MIN8铣通槽时粗加S1300R/MINF500MM/MIN精加工S2000R/MINF400MM/MIN9铣键槽见普通设备上的变速手柄合适调整考虑到机床刚性及其他原因取N500R/MIN,即S500R/MINF15。三进给速度进给速度的原则是当工件的质量要求能得到保证时,可选择较高的进给速度,切断加共34页工深孔和精车时选择较低的进给速度,进给速度应与主轴转速及背吃刀量相适应,根据以上主轴转速与背吃刀量相适应,根据以上主轴转速与背吃刀量的选择,可确定进给速度。进给速度VF是切削刃上选定点相对于工件的进给运动的瞬时速度,它与转速N,进给量F之间的关系为VFFN由上式可得出1粗车镗内外圆表面是的进给速度VF600R/MIN02MM/R120MM/MIN。2精车外圆时的进给速度VF1100R/MIN01MM/R110MM/MIN。3精镗内孔时的进给速度VF800R/MIN01MM/R80MM/MIN。二数控加工刀具卡共34页第四章加工程序的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论