autoform分析步骤_第1页
autoform分析步骤_第2页
autoform分析步骤_第3页
autoform分析步骤_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Autoform 介绍i.概述:AutoForm工程有限公司包括瑞士研发与全球市场中心和德国工业应用与技术支持中心,其 研发和应用的阶段主要有:1991年实现自适应精化(adaptive refinement)网格;1992年采用隐式算法(implicit code)并与1993年开发出板成形模拟分析的专用软件;1994年实现对CAD数据的自动网格划分;1995年开始工业应用;1996年实现对CAD数据的自动倒园(au tomatic filleting) ; 1997年采用 One-step(步成形)代码实现工艺补充面 (addendum)的自动设 计;1998年实现压料面(binder)的

2、自动生成;2000年实现快速交互式模具设计。它是专门针对汽车工业和金属成形工业中的板料成形而开发和优化的,用于优化工艺方案和进行复杂型面的模具设计,约 90%的全球汽车制造商和100多家全球汽车模具制造商和冲压件供应商都使用它来进行产品开发、工艺规划和模具研发,其目标是解决零件可制造性(part feasibility)、模具设计(die design)可视化调试 (virtual tryout)。它将来自世界范围内的许多汽车 制造商和供应商的广泛的诀窍和经验融入其中,并采取用户需求驱动的开发策略,以保证提供最新的技术。AutoForm的特点:1)它提供从产品的概念设计直至最后的模具设计的一个

3、完整的解决 方案,其主要模块有 User- Interface(用户界面)、Automesher(自动网格划分)、Onestep(一步 成形)、DieDesigner(模面设计)、Incremental(增量求解)、Trim(切边)、Hydro(液压成形),支 持Windows和Unix操作系统。2)特别适合于复杂的深拉延和拉伸成形模的设计,冲压工艺 和模面设计的验证,成形参数的优化,材料与润滑剂消耗的最小化,新板料(如拼焊板、复合板)的评估和优化。3)快速易用、有效、鲁棒(robust)和可靠:最新的隐式增量有限元迭代 求解技术不需人工加速模拟过程,与显式算法相比能在更短的时间里得出结果;其

4、增量算法比反向算法有更加精确的结果,且使在FLC-失效分析里非常重要的非线性应变路径变得可行。即使是大型复杂制件,经工业实践证实是可行和可靠的。4) AutoForm带来的竞争优势:因能更快完成求解、友好的用户界面和易于上手、对复杂的工程应用也有可靠的结果等,AutoForm能直接由设计师来完成模拟,不需要大的硬件投资及资深模拟分析专家,其高质量 的结果亦能很快用来评估,在缩短产品和模具的开发验证时间、降低产品开发和模具成本、 提高产品质量上效果显著,对冲压成形的评估提供了量的概念,给企业带来明显的竞争优势和市场机遇。1 Ij. Br. , dl l,巳4_上>否牌。2. AutoFor

5、m的前处理与后处理从数据输入到后处理结果的输出,AutoForm融合了一个有效开发环境所需的所有模块。其图形用户界面(GUI)经过特殊裁剪更适合于板成形过程,从前处理到后处理的全过程与CAD数据的自动集成,网格的自动自适应划分;所有的技术工艺参数都已设置且易变更,设 置的过程易于理解且符合工程实际。AutoForm软件与其它CAD软件的数据接口可以通过IGES、VDA等数据标准转换,并实现了与CATIA数据的直接转换。其偏移(offset)功能能很快地从凸模(或凹模)生成凹模(或 凸模);能很方便地定义拉延筋和修边轮廓等功能曲线;复杂形状的落料件和组合毛坯件的 自动网格划分;对称件可以1/2描

6、述;能直接地将落料轮廓、拉延筋线和修边轮廓从CAD带入模拟中。这些都大大简化了CAD数据的输入。其网格生成器(automesher模块),网格自适应功能非常强,可以将 IGES和VDA曲面 转化成AutoForm能够识别的文件格式,在定义网格大小、最大表面误差值后能很快完成高 度复杂自由几何曲面的自动网格划分。对CAD数据进行尖角圆整(自动倒圆),即在划分网格后检查工具几何模型的自由边界、棱边和内凹面,无须人工干预及修改即可对棱边倒圆, 在尖角处自动产生指定半径倒圆,效率高。由于软件接触算法的特点,对工具采用曲面片(facet)离散,对毛坯采用网格单元剖分,自动检查孔、尖角和根切截面,因而可大

7、量节省有限 元模型前处理的时间。AutoForm能根据计算的需要自动重新定义网格,生成成形件的适应性有限元网格,采用的标准是几何和应变梯度。AutoForm的自适应网格划分产生非常精确的几何分辨率和准确的结果。AutoForm对模拟结果融合了许多有效和宜人的解释:1)可以实时地观测计算结果,以便在计算初始阶段即可发现模型设置方面的错误,避免浪费时间。2)可观测应力、应变和厚度分布、材料流动状况,可计算工具应力、冲压力,可实现材料标记、法向位移的标识,可 生成对破裂、起皱和回弹失效进行判定的成形质量图以及成形极限图(在成形极限图上可标识变形临界区域、标识某一单元的应变路径)。3)还可进行一些特殊

8、评估:几何体和结果的截面显示;FLC失效分析;状态改动后的后期显示;回弹评估用的实际模型定位。图形显示支持 OpenGL图形标准,能真实上色,能显示几何体的阴影图及伴有选定结果变量后的彩色分布图,动画能力和阴影图的实时旋转使后处理变得更容易并使用户分析结果 更方便快捷,弹击鼠标可显示零件的有关数据,数据结果的输出等。动态剪辑(dynamic clipping)和动态截面(dynamic section):用户界面的动态剪辑和动态 截面支持板料和模具接触面间的准确评估,而且模具闭合时板料的成形状态能很方便地观看和理解,这利于确认模具何形状的任何改变后材料的流动和板料成形情况。滑动线和冲击线(sk

9、id and impact lines)的评价:通过在模具表面上定义滑动线和冲击线 来评估它们在板料上的运动情形及其对制件质量的影响,并能自动确定板料和这些线的接触情形以及接触区域内材料的流动轨迹。3. Autoform-DieDesignerTM:快速模面设计及其优化的模块传统的CAD系统采用人工方法来生成压料面和工艺补充面,费时费事。 DieDesigner 是AutoForm的一个有重要功能模块,它是和 BMW和Audi联合开发并得到来自DaimlerChrysler和GM的技术反馈,是专为汽车模具设计师、工艺工程师和模具制作人员而开发的, 可以快速实现基于用户控制的压料面和工艺补充面的

10、参数化设计和修改。由于很快自动生成压料面和工艺补充面的一次概念设计,并显示出整个模面形状,模具工程师可在短时间内生成若干个拉延方案并进行其模拟,以判定最优设计,从而显著减少模具开发时间;同时,考虑压料面和工艺补充面,工艺工程师也能大大增加零件可制造性的评估精度。它包含了许多特别适合汽车工业的专用特征。从零件的CAD表面数据(IGES或VDA)开始,首先用 AutoForm- Automesher对零件进 行自动网格划分,自动填充零件几何体中的孔洞和间隙,并通过几何图形或交互式地改变表面轮廓,用户可以对制件和工艺方案(run-off)进行便捷的修改。基于用户指定的半径或变半径,零件的尖边缘自动倒

11、圆,对零件的这种修改有利于改进拉延效果,对提高冲压可成形性通常也是极为重要的。自动旋转制件几何体形成拉延方向(automatic tipping):可根据拉延深度优选最好的拉延冲压方向,显示冲压质量差 (backdraft)和危险的区域,避免制件无法冲压(undercut )和平衡变形,这对确定优化的冲压方向角(Tip angle)是重要的。转换矩阵可以通过IGES或VDAFS将冲压方向转换输入CAD ,优选过程简便、直观。快速自动生成压料面(binder)和工艺补充面(addendum):精确的曲面轮廓方法与模具工 程实际相结合根据制件数据生成压料面,并且允许用户修改局部表面轮廓或按准确的尺

12、寸设计。对于产品设计师,这使得在产品开发的早期就可以进行增量模拟,从而增加了产品成形性评估的准确度;对于模具设计师,它是产生初始压料面的一个有效模块,生成的压料面可以还通过IGES或VDAFS转换输入CAD做进一步修改用。在此基础上可以实现用户控制 的参数化的工艺补充部分自动生成。整个过程充分体现出用户控制、全自动和全参数化的特征。用户可以通过修改工艺补充面轮廓和相应的模面细节,如生成的拉延包(drawbar)太高导致过度拉长和破裂等,可通过降低拉延坎高度、加大圆角半径,来达到良好的拉延成形效果。 基于轮廓的压料面设计,使用 2D模拟预优化工艺补充面轮廓,拉延深度显示等,这对优化 初始凸模接触

13、 (initial punch contact)是很重要的。与 AutoForm-Onestep , AutoForm- Incremental 和 AutoForm-Optimizer 的完全集成,在 模面设计中生成的压料面、工艺补充面和制件几何体三部分,能很容易地转换进入并完全自动地生成相应的模具并设置出工艺步骤,从而立即由AutoForm-Onestep和AutoForm-Incremental模块进行试模。由于全参数化,用户的修改可以迅速完成,且 AutoForm-OneStep和 AutoForm-Incremental进行虚拟试模的模具可自动更新。基于 2D模拟,模具不同区域和不

14、同截面上的临界应变(critical strains)和滑移/冲击线的评估,这对模具设计过程早期评估工艺补充面特别有用。为进一步改进模面设计,DieDesigner包含一个完全集成的模块AutoForm-Optimizer(优化模块),它无缝集成于 AutoForm-User-Interface,可与 AutoForm-OneStep 和 AutoForm-Incr emental同步使用;它基于进化(Evolution)策略,通过多次模拟能优化模面和冲压过程方案, 从而判定和确认优化的模面形状(制件和工艺补充面的圆角半径,拉延包高度,凸模拔模角,储料包(over-crown)等,拉延半径、拉

15、延筋)和冲压过程参数(压料力,拉延筋强度和等效拉延 筋阻力,坯料的轮廓,模具型面几何参数等,摩擦条件和润滑,平衡块(spacer)和工艺切口 (relief cuts)等工艺条件的设置等)。如对某行李箱盖(deck-lid),目标是在行李箱盖内部区域中 获得足够的伸长变形,使用 AutoForm-Optimizer进行优化的对象是拉延包高度和拉延筋阻 力强度,通过多次反复试模,就可以使大面积的不充分伸长变形优化为充分伸长变形。DieDesigner的特点:1)能实现增强几何成形性的评价,不同模具概念设计的快速生成和优化。2)实有直觉的模面生成,易用;全参数化,快捷。 3)与Onestep和In

16、cremental求解 的完全集成。4)完整:自动变半径倒园,优化的拔模角,自动充填表孔洞/边界区域,自动和交互式的压料面生成,通过2D模拟完成工艺补充轮廓的前优化处理,自动和交互式的工艺补充部分生成。4. AutoformTM 板成形软件:一个完整的解决方案4.1 AutoForm-Onestep :评估零件的可制造性Onestep采用仅基于产品的一步成形算法(Onestep Codes),目标是对产品进行反复优化(Iterative Product Optimization)的多次模拟。首先输入零件的 CAD数据,并进行孔洞和间隙 填充以及棱边的倒圆处理,进行一些工艺参数设置,可很快得到最

17、小毛坯形状、裂纹和皱纹等成形缺陷,FLD,反映伸长量和厚度变化等质量目标的成形结果。它讨论产品可制造性、 可以实现毛坯反算,并对零件的可制造性快速评价。4.2 AutoForm-Onestep/Binder :拉延件的成形性快速评估它采用基于拉延件的一步成形算法(One-Step Codes with Binder/Addendum),目标是对模具和工艺方案进行反复优化(Iterative Tool and Process Optimization)的多次模拟,讨论模具的概念设计(Tooling Concepts)o即为增加成形性评价结果的精确性,可继续输入凸模入口线(Punch-openin

18、g line)和翻边线,并考虑生成一个模面,通过考虑工艺补充部分的重要 的限流效果(Restraining Effect),来增加结果精度。而且通过生成整副模具和完成增量模拟 所需的输入,就可从 Onestep过渡到Incremental来更全面检查拉延成形障碍(breakdown) o它可解决在产品设计阶段的早期成形性评价和不同模具概念设计方案的评估;易用,快捷, 准确。4.3 Incremental与可视化调试AutoForm- Incremental采用基于拉延件的增量算法(Incremental Codes),目标是对模具和工艺方案进行反复优化(Iterative Tool and P

19、rocess Optimization)的多次模拟或为了确认模具和工艺方案而进行的有选择性的模拟(Selective Simulations for Tool and Process Validation),全面讨论模具和工艺设计。它使用许多现代模拟技术,如应用新的隐式有限元算法保证求解的迭代收敛;弯曲效应的考虑利于求解回弹;采用自适应网格、时阶控制、复杂工具描述的强有力接触算法、数值控制参数的自动决定和使用精确的全量拉格朗日理论(total-Lagrange theory)等保证求解快而且准确。采用新的切割算法(New Cutting Algorithm)来增加精度,可以确定任意一个非Z方向

20、为修边线的工作方向,这就允许了斜楔修边和冲孔操作的模拟;它也可以在冲切线周围对板料网格再划分,所以非常小的孔也可以精确切出。此外也可以算出考虑板厚、材料硬化和修切线长度后所需要的冲裁力。它同时融于了许多工程应用技术,如务实的工艺阶段转化,压料圈压紧后工件状态的决定,基于前述结果的后续运算(继续开始),成形过程中的工艺切口,切边操作,最终制件的回弹计算;可用任意数值的力和位移控制工具,工具的摩擦,采用位置相关(position-dependent)和压边力适时变化的压料圈,考虑了拉延筋和平衡块(spacers)的模具模型,考虑了加工硬化和应变率效应(strain-rate effect)的各向异

21、性材料模型;等效拉延筋阻力模型可以考虑板 料经过拉延筋时的弯曲、反弯曲效应,拉延筋的几何模型考虑了其压入深度;具有包括美国、日本及欧洲的上百种材料的广泛的材料数据库,该软件的材料参数库开放性强,可以自行建立适应用户需要的参数库。它可以模拟整个冲压过程:板料的重力效应(gravity effect,这对由于板料重量而下垂或 变形的大型零件是非常重要的),压料圈成形(binder wrap),拉延成形。压料面和凸模的几何形状有时会在拉延的初始阶段诱发大型皱纹的扩展,AutoForm可模拟压料圈下的皱纹以及拉延过程中这些皱纹的变化,虽然这些皱纹一般都随着拉延的进行而消失。而且,在定义毛坯材料及性质的

22、同时,可以定义工艺切口和工艺孔。在模拟多步冲压成形时,也可以加入切边或冲孔工序,以及确定整形前的切边线。Autoform- Incremental(增量求解):1)可解决:模具设计的快速调试;确定工艺参数和工艺过程局部窗口;模具和工艺优化。2)易用,快捷,对大多数零件得到结果不超过3小时。3)准确:预测起皱、破裂、表面质量、冲击和滑移线,小的几何细节,最小元素尺寸小于1mm。4)详细的表面成形质量,如破裂、变薄、伸长、起皱等,成形极限图 FLD、材料流入 量、滑移和冲击线、成形力等。5)完整:重力、压边、拉延、切边、整形、回弹,全工序成形。6)拼合板和复合板的模拟:可以定义一个不同材料和/或厚

23、度的裁剪拼合毛坯作为AutoForm-Incremental模拟的板坯,板坯上的焊缝也可以相互交叉,这在开发新型汽车中以优化 重量和性能是非常重要的。7)可按用户指定的有限元网格自动映射Autoform模拟结果,供碰撞(crash)、结构(structural)、疲劳(fatigue)和振动(vibration)等分析用。Autoform 分析一般步骤1. 将制件数型读入Autoform2. 将制件摆至冲压方向。此过程需遵循先平移后旋转的原则,平移大小及旋转角度值可从对话窗口的左下角反映出来。自动确定冲压方向常用方法主要有:平均法矢法、最小拉延深度法和最小冲压负角法。3. 填充孔洞。制件上的孔洞,尤其是较大的孔洞,必须填充,这是保证计算时接触搜索的需要,保证计 算精度的需要。有些边界较复杂的孔洞,需添加特征线来控制填充面的形状,此时,为保证填充面能顺利 输出,推荐采用“Add detail ”方式来制作填充面。4. 边界光顺。一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论