数字信号处理a(双语)chapter 6-z transform b_第1页
数字信号处理a(双语)chapter 6-z transform b_第2页
数字信号处理a(双语)chapter 6-z transform b_第3页
数字信号处理a(双语)chapter 6-z transform b_第4页
数字信号处理a(双语)chapter 6-z transform b_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter6z-Transform.6.4TheInversez-Transform6.5z-TransformTheorems

PartB:InverseZTandZTTheorems.6.4TheInversez-Transform6.4.1GeneralExpression6.4.2Inversez-TransformbyTableLook-UpMethod6.4.3Inversez-TransformbyPartial-FractionExpansion6.4.4Partial-FractionUsingMATLAB6.4.5Inversez-TransformviaLongDivision6.4.6Inversez-TransformUsingMATLAB.6.4.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression逆z变换是一个对X(Z)Zn-1进行的围线积分,积分路径C是一条在X(Z)收敛环域(Rx-,Rx+)内以逆时针方向绕原点一周的单围线。围线积分路径.直接计算围线积分比较麻烦,一般不采用此法求逆z变换,求解逆z变换的常用方法有:留数定律法查表法部分分式法★长除法6.4.1GeneralExpression.6.4.1GeneralExpression.利用留数定理计算围线积分•一阶极点的留数

•N阶极点的留数.1.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression.6.4.1GeneralExpression.Example6.126.4.2TableLook-upMethodLookupTable6.1onPage253.6.4.3Inversez-TransformbyPartial-FractionExpansionArationalz-transformG(z)withacausalinversetransformg(n)hasanROCthatisexteriortoacircleHereitismoreconvenienttoexpressG(z)inapartial-fractionexpansionformandthendetermineg(n)bysummingtheinversetransformoftheindividualsimplertermsintheexpansion.6.4.3Inversez-TransformbyPartial-FractionExpansion.6.4.3Inversez-TransformbyPartial-FractionExpansionSolutions:Step1--ConvertingG(z)intotheformofproperfractionsbylongdivisionStep2--Summingtheinversetransformoftheindividualsimplertermsintheexpansion.6.4.3Inversez-TransformbyPartial-FractionExpansion.6.4.3Inversez-TransformbyPartial-FractionExpansion.6.4.4Partial-FractionUsingMATLAB[r,p,c]=residuez(num,den)developsthepartial-fractionexpansionofarationalz-transformwithnumeratoranddenominatorcoefficientsgivenbyvectorsnumanddenVectorrcontainstheresiduesVectorpcontainsthepolesVectorccontainstheconstantsηl.[num,den]=residuez(r,p,c)

convertsaz-transformexpressedinapartial-fractionexpansionformtoitsrationalform6.4.4Partial-FractionUsingMATLAB.6.4.5Inversez-TransformviaLongDivision.6.4.5Inversez-TransformviaLongDivision.6.4.6Inversez-TransformUsingMATLABThefunctionimpzcanbeusedtofindtheinverseofarationalz-transformG(z)ThefunctioncomputesthecoefficientsofthepowerseriesexpansionofG(z)Thenumberofcoefficientscaneitherbeuserspecifiedordeterminedautomatically.6.4TheInversez-Transform6.5z-TransformTheorems

PartB:InverseZTandZTTheorems.6.5z-TransformTheorems..6.5z-TransformTheorems.6.5z-TransformTheorems.6.5z-TransformTheorems.6.5z-TransformTheorems.6.6ComputationoftheConvolutionSumofFinite-LengthSequences6.6.1LinearConvolutionUsingPolynomialMultiplication6.6.2CircularConvolutionUsingPolynomialMultiplication

PartC:Convolution

.6.6.1LinearConvolutionUsingz-Transform

Letdenote{x[n]},0nL,

afinite-lengthsequenceoflengthL+1Letdenote{h[n]}0nM,afinite-lengthsequenceoflengthM+1Weshallevaluatey[n]=x[n]*h[n]usingz-transformNote:{y[n]}

isasequenceoflengthL+M+1.6.6.1LinearConvolutionUsingz-Transform

LetX(z)denotethez-transformof{x[n]}

whichisapolynomialofdegreeLinz-1,i.e.,X(z)=x[0]+x[1]z-1+x[2]z-2+…+x[L]z-L

LetH(z)denotethez-transformof{h[n]}whichisapolynomialofdegreeMinz-1H(z)=h[0]+h[1]z-1+h[2]z-2+…+h[M]z-M.6.6.1LinearConvolutionUsingz-Transform

Fromtheconvolutionpropertyofthez-transform,itfollowsthatthez-transformof{y[n]}issimplygivenby

Y(z)=X(z)H(z)whichisapolynomialofdegreeL+Minz-1,i.e.,Y(z)=y[0]+y[1]z-1+y[2]z-2+…+y[L+M]z-(L+M).6.6.1LinearConvolutionUsingz-Transform

WhereIntheabovewehaveassumed

x[n]=0forn>L

h[n]=0forn>M.6.6.1LinearConvolutionUsingz-Transform

(pp.278)Example6.30LinearConvolutionofOne-SidedSequencesUsingthePolynomialMultiplicationMethod

.6.6.2CircularConvolutionUsingz-Transform

Let{x[n]}and{h[n]}betwolength-Nsequencesdefinedfor0nN-1

withX(z)andH(z)denotingtheirz-transformsLetyc[n]=x[n]Nh[n]denotetheN-pointcircularconvolutionofx[n]

andh[n]LetyL[n]=x[n]*h[n]denotethelinearconvolutionofx[n]

andh[n].6.6.2CircularConvolutionUsingz-Transform

LetYc(z)andYL(z)denotethez-transformsofyc[n]andyL[n]Itcanbeshownthat

Yc(z)=<YL(z)>(z-N

-1)Themodulooperationwithrespecttoz-N

-1istakenbysettingz-N=1

<z-N

-1)>(z-N

-1)=z-1

<z-N

-2)>(z-N

-1)=z-2

.6.6.2CircularConvolutionUsingz-Transform

(pp.279)Example6.32CircularConvolutionofCausalSequencesUsingthePolynomialMultiplicationMethod.6.6.2CircularConvolutionUsingz-Transform

.6.6.2CircularConvolutionUsingz-Transform

.6.7TheTransferFunctionThetransferfunctionisageneralizationofthefrequencyresponsefunction.TheconvolutionsumdescriptionofanLTIdiscrete-timesystemwithanimpulseresponseh[n]isgivenby.6.7TheTransferFunctionTakingthez-transformsofbothsidesweget.6.7TheTransferFunctionThus,Y(z)=H(z)X(z)

Or,Therefore,.6.7.1DefinitionHence,H(z)=Y(Z)/X(z)ThefunctionH(z),whichisthez-transformoftheimpulseresponseh[n]oftheLTIsystem,iscalledthetransferfunctionorthesystemfunctionTheinversez-transformofthetransferfunctionH(z)yieldstheimpulseresponseh[n].6.7.2TransferFunctionExpressionConsideranLTIdiscrete-timesystemcharacterizedbyadifferenceequationItstransferfunctionisobtainedbytakingthez-transformofbothsidesoftheaboveequationThus.6.7.2TransferFunctionExpressionOr,equivalentlyasAnalternateformofthetransferfunctionisgivenby.6.7.2TransferFunctionExpressionOr,equivalentlyas1,2,…,

Marethefinitezeros,and1,2,…,

NarethefinitepolesofH(z)IfN>M,thereareadditional(N-M)zerosatz=0IfN<M,thereareadditional(M-N)polesatz=0

.6.7.2TransferFunctionExpressionForacausalIIRdigitalfilter,theimpulseresponseisacausalsequenceTheROCofthecausaltransferfunctionisthusexteriortoacirclegoingthroughthepolefurthestfromtheoriginThustheROCisgivenby.6.7.2TransferFunctionExpressionExample-ConsidertheM-pointmoving-averageFIRfilterwithanimpulseresponse

Itstransferfunctionisthengivenby.6.7.2TransferFunctionExpressionThetransferfunctionhasMzerosontheunitcircleatz=ej2k/M,0kM-1ThereareM-1polesatz=0andasinglepoleatz=1Thepoleatz=1exactlycancelsthezeroatz=1TheROCistheentirez-planeexceptz=0M=8.6.7.2TransferFunctionExpressionExample-AcausalLTIIIRdigitalfilterisdescribedbyaconstantcoefficientdifferenceequationgivenby

y[n]=x[n-1]-1.2x[n-2]+x[n-3]+1.3y[n-1]-1.04y[n-2]+0.222y[n-3]Itstransferfunctionisthereforegivenby.6.7.2TransferFunctionExpressionAlternateforms:ROC:Note:Polesfarthestfromz=0haveamagnitude.6.7.3FrequencyResponsefromTransferFunctionIftheROCofthetransferfunctionH(z)includestheunitcircle,thenthefrequencyresponseH(ej)oftheLTIdigitalfiltercanbeobtainedsimplyasfollows:

ForarealcoefficienttransferfunctionH(z)itcanbeshownthat.6.7.3FrequencyResponsefromTransferFunctionForastablerationaltransferfunctionintheformthefactoredformofthefrequencyresponseisgivenby.6.7.3FrequencyResponsefromTransferFunctionItisconvenienttovisualizethecontributionsofthezerofactor(z-k)andthepolefactor(z-k)fromthefactoredformofthefrequencyresponseThemagnitudefunctionisgivenby.6.7.3FrequencyResponsefromTransferFunctionThephaseresponseforarationaltransferfunctionisoftheformThemagnitude-squaredfunctionofareal-coefficienttransferfunctioncanbecomputedusing.6.7.4GeometricInterpretationofFrequencyResponseComputation

Thefactoredformofthefrequencyresponse

isconvenienttodevelopageometricinterpretationofthefrequencyresponsecomputationfromthepole-zeroplotasωvariesfrom0to2πontheunitcircle.6.7.4GeometricInterpretationofFrequencyResponseComputationThegeometricinterpretationcanbeusedtoobtainasketchoftheresponseasafunctionofthefrequencyAtypicalfactorinthefactoredformofthefrequencyresponseisgivenby(ejω

-ρejΦ

)whereρejΦ

isazeroifitiszerofactororisapoleifitisapolefactor.6.7.4GeometricInterpretationofFrequencyResponseComputationAsshownbelowinthez-planethefactor(ejω-ρejΦ)representsavectorstartingatthepointz=ρejΦ

andendingontheunitcircleatz=ejω.Asωisvariedfrom0to2π,thetipofthevectormovescounterclockisefromthepointz=1tracingtheunitcircleandbacktothepointz=16.7.4GeometricInterpretationofFrequencyResponseComputation.Asindicatedby

themagnituderesponse|H(ejω)|ataspecificvalueofωisgivenbytheproductofthemagnitudesofallzerovectorsdividedbytheproductofthemagnitudesofallpolevectors6.7.4GeometricInterpretationofFrequencyResponseComputation.Likewise,fromweobservethatthephaseresponseataspecificvalueofωisobtainedbyaddingthephaseofthetermp0/d0andthelinear-phasetermω(N-M)tothesumoftheanglesofthezerovectorsminustheanglesofthepolevectors6.7.4GeometricInterpretationofFrequencyResponseComputation.Thus,anapproximateplotofthemagnitudeandphaseresponsesofthetransferfunctionofanLTIdigitalfiltercanbedevelopedbyexaminingthepoleandzerolocationsNow,azero(pole)vectorhasthesmallestmagnitudewhenω

6.7.4GeometricInterpretationofFrequencyResponseComputation幅度最小幅度最大.Tohighlyattenuatesignalcomponentsinaspecifiedfrequencyrange,weneedtoplacezerosveryclosetoorontheunitcircleinthisrange(零点——谷值)Likewise,tohighlyemphasizesignalcomponentsinaspecifiedfrequencyrange,weneedtoplacepolesveryclosetoorontheunitcircleinthisrange(极点——峰值)6.7.4GeometricInterpretationofFrequencyResponseComputation..Example:y(n)=x(n)-x(n-4).Question:1、极点的位置对系统的稳定性会有影响吗?2、系统在Z域的稳定性条件是什么?.AcausalLTIdigitalfilterisBIBOstableifandonlyifitsimpulseresponseh[n]

isabsolutelysummable,i.e.,

WenowdevelopastabilityconditionintermsofthepolelocationsofthetransferfunctionH(z)6.7.5StabilityConditioninTermsofthePoleLocations

.6.7.5StabilityConditioninTermsofthePoleLocationsTheROCofthez-transformH(z)oftheimpulseresponsesequenceh[n]isdefinedbyvaluesof|z|=rforwhichh[n]r-nisabsolutelysummableBIBOstable.Thus,iftheROCincludestheunitcircle|z|=1,thenthedigitalfilterisstable,andviceversaInaddition,forastableandcausaldigitalfilterforwhichh[n]isaright-sidedsequence,theROCwillincludetheunitcircleandentirez-planeincludingthepointz=∞AnFIRdigitalfilterwithboundedimpulseresponseisalwaysstable6.7.5StabilityConditioninTermsofthePoleLocations.Ontheotherhand,anIIRfiltermaybeunstableifnotdesignedproperlyInaddition,anoriginallystableIIRfiltercharacterizedbyinfiniteprecisioncoefficientsmaybecomeunstablewhencoefficientsgetquantizedduetoimplementation6.7.5StabilityConditioninTermsofthePoleLocations.Example-ConsiderthecausalIIRtransferfunctionTheplotoftheimpulseresponsecoefficientsisshownonthenextslide6.7.5StabilityConditioninTermsofthePoleLocations.6.7.5StabilityConditioninTermsofthePoleLocationsh[n]decaysrapidlytozerovalueasnincreasesTheabsolutesummabilityconditionofh[n]issatisfied.Hence,H(z)isastabletransferfunction..Now,considerthecasewhenthetransferfunctioncoefficientsareroundedtovalueswith2digitsafterthedecimalpoint:6.7.5StabilityConditioninTermsofthePoleLocations.6.7.5StabilityConditioninTermsofthePoleLocations

increasesrapidlytoaconstantvalueasnincreasesHence,theabsolutesummabilityconditionofisviolated.Thus,isanunstabletransferfunction.ThestabilitytestingofaIIRtransferfunctionisthereforeanimportantproblemInmostcasesitisdifficulttocomputetheinfinitesumForacausalIIRtransferfunction,thesumScanbecomputedapproximatelyas6.7.5StabilityConditioninTermsofthePoleLocations.6.7.5StabilityConditioninTermsofthePoleLocationsThepartialsumiscomputedforincreasingvaluesofKuntilthedifferencebetweenaseriesofconsecutivevaluesofSKissmallerthansomearbitrarilychosensmallnumber,whichistypically10-6ForatransferfunctionofveryhighorderthisapproachmaynotbesatisfactoryAnalternate,easy-to-test,stabilityconditionisdevelopednext.ConsiderthecausalIIR

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论