营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第1页
营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第2页
营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第3页
营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第4页
营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

营口市重点中学2024届高一上数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.2.手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在0~1之间.若设计师将某款手机的屏幕面积和手机前面板面积同时增加相同的数量,升级为一款新手机,则该款手机的“屏占比”和升级前相比()A.不变 B.变小C.变大 D.变化不确定3.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1154.集合A=,B=,则集合AB=()A. B.C. D.5.下列函数既是定义域上的减函数又是奇函数的是A. B.C. D.6.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.57.函数的最小正周期为A. B.C.2 D.48.已知,,,,则,,的大小关系是()A. B.C. D.9.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 810.定义在上的函数,,若在区间上为增函数,则一定为正数的是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的图象关于原点对称,则__________12.已知,则的值为__________13.已知函数是定义在上的奇函数,则___________.14.已知,,则__________15.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的最小正周期为.(1)求的值;(2)若,求的值.17.已知函数的定义域为A,的值域为B(1)求A,B;(2)设全集,求18.知,.(Ⅰ)若为真命题,求实数的取值范围;(Ⅱ)若为成立的充分不必要条件,求实数的取值范围.19.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值20.2020年12月26日,我国首座跨海公铁两用桥、世界最长跨海峡公铁两用大桥——平潭海峡公铁两用大桥全面通车.这是中国第一座真正意义上的公铁两用跨海大桥,是连接福州城区和平潭综合实验区的快速通道,远期规划可延长到,对促进两岸经贸合作和文化交流等具有重要意义.在一般情况下,大桥上的车流速度(单位:千米/时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,将造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.21.已知函数fx=2sin(1)求fx(2)若fx在区间-π6

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案2、C【解析】做差法比较与的大小即可得出结论.【详解】设升级前的“屏占比”为,升级后的“屏占比”为(,).因为,所以升级后手机“屏占比”和升级前相比变大,故选:C3、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D4、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.5、C【解析】根据函数的单调性与奇偶性对选项中的函数进行判断即可【详解】对于A,f(x)=|x|,是定义域R上的偶函数,∴不满足条件;对于B,f(x),在定义域(﹣∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足条件;对于C,f(x)=﹣x3,在定义域R上是奇函数,且是减函数,∴满足题意;对于D,f(x)=x|x|,在定义域R上是奇函数,且是增函数,∴不满足条件故答案为:C【点睛】本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.6、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7、C【解析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可8、B【解析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【详解】由,不妨设,则,,,所以,故选:B9、D【解析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.10、A【解析】在区间上为增函数,即故选点睛:本题运用函数的单调性即计算出结果的符号问题,看似本题有点复杂,在解析式的给出时含有复合部分,只要运用函数的解析式求值,然后利用函数的单调性,做出减法运算即可判定出结果二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据余弦型函数的对称性可得出结果.【详解】函数的图象关于原点对称,则.故答案为:.12、【解析】答案:13、1【解析】依题意可得,,则,解得当时,,则所以为奇函数,满足条件,故14、【解析】构造角,,再用两角和的余弦公式及二倍公式打开.【详解】,,,,,故答案为:【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.15、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2),【解析】【小问1详解】由题意,解得,即故【小问2详解】由题意即,又,故故17、(1),;(2).【解析】(1)由,可得定义域,由二次函数性质得得值域,即得;(2)根据集合运算法则计算【详解】(1)由得:,解得..∴,(2)由(1)得,∴.【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论【详解】(Ⅰ)若为真命题,解不等式得,实数的取值范围是.(Ⅱ)解不等式得,为成立的充分不必要条件,是的真子集.且等号不同时取到,得.实数的取值范围是.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含19、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象如下图所示,且,,,由图象得有三个不同的实数根,则,,所以,即,所以,所以,故.20、(1)(2)车流密度为110辆/千米时,车流量最大,最大值为6050辆/时【解析】(1)根据题意,当时,设,进而待定系数得,故;(2)结合(1)得,再根据二次函数模型求最值即可.【小问1详解】解:当时,设则,解得:所以【小问2详解】解:由(1)得,当时,当时,,∴当时,的最大值为∴车流密度为110辆/千米时,车流量最大,最大值为6050辆/时21、(1)π;单调递减区间是π3+kπ,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论