




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省新泰市第二中学高一数学第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,若关于的不等式在区间上有解,则()A. B. C. D.2.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.3.一个等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是()A.两个共底面的圆锥 B.半圆锥 C.圆锥 D.圆柱4.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.755.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.6.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.7.在等比数列中,,,则数列的前六项和为()A.63 B.-63 C.-31 D.318.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形9.若等差数列的前10项之和大于其前21项之和,则的值()A.大于0 B.等于0 C.小于0 D.不能确定10.已知,,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.12.已知,各项均为正数的数列满足,,若,则的值是.13.函数的单调递减区间是______.14.某空间几何体的三视图如图所示,则该几何体的体积为________15.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.16.在各项均为正数的等比数列中,,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,令(1)求证数列为等比数列,并求通项公式;(2)求数列的前n项和.18.在中,(Ⅰ)求;(Ⅱ)若,,求的值19.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.20.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.21.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.2、B【解析】
函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【点睛】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.3、C【解析】
根据旋转体的知识,结合等腰三角形的几何特征,得出正确的选项.【详解】由于等腰三角形三线合一,故等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是圆锥.故选C.【点睛】本小题主要考查旋转体的知识,考查等腰三角形的几何特征,属于基础题.4、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.5、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.6、B【解析】
根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【点睛】本题考查锥体体积的求解问题,属于基础题.7、B【解析】
利用等比数列通项公式求出公式,由此能求出数列的前六项和.【详解】在等比数列中,,,解得数列的前六项和为:.故选:【点睛】本题考查等比数列通项公式求解基本量,属于基础题.8、D【解析】
由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.9、C【解析】
根据条件得到不等式,化简后可判断的情况.【详解】据题意:,则,所以,即,则:,故选C.【点睛】本题考查等差数列前项和的应用,难度较易.等差数列前项和之间的关系可以转化为与的关系.10、C【解析】
分别求出的值再带入即可.【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】
由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.12、【解析】
由题意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考点:数列的递推公式.13、【解析】
求出函数的定义域,结合复合函数求单调性的方法求解即可.【详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【点睛】本题主要考查了复合函数的单调性,属于中档题.14、2【解析】
根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.15、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.16、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由变形可得,即,于是可得数列为等比数列,进而得到通项公式;(2)由(1)得,然后分为奇数、偶数两种情况,将转化为数列的求和问题解决.【详解】(1)∵,∴,∵,∴.又,∴数列是首项为8,公比为3的等比数列,∴.(2)当为正偶数时,.当为正奇数时,.∴.【点睛】(1)证明数列为等比数列时,在运用定义证明的同时还要说明数列中不存在等于零的项,这一点容易忽视.(2)数列求和时要根据数列通项公式的特点,选择合适的方法进行求解,求解时要注意确定数列的项数.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.19、(Ⅰ)详见解析;(Ⅱ)4.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(4)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.试题解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差数列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考点:三角函数与解三角形.20、(1)或;(2).【解析】
(1)由正弦定理将边化为对应角的正弦值,即可求出结果;(2)由余弦定理和三角形的面积公式联立,即可求出结果.【详解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面积为.的周长为5+.【点睛】本题主要考查正弦定理和余弦定理解三角形,属于基础题型.21、(1);(2);(3).【解析】
(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运用直径式圆的方程,得直线的方程为,结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红安县期末数学试卷
- 海淀其中数学试卷
- 合肥火炬小升初数学试卷
- 医院车辆管理课件
- 中国可变电容器行业发展监测及投资战略规划研究报告
- 2025年安徽省安庆市第十一中学物理高一下期末达标检测模拟试题含解析
- 2025年中国二维码识读设备行业发展监测及投资战略研究报告
- 升降机的研究报告总结
- 中国广西木材加工行业市场发展监测及投资战略规划报告
- 健康理疗师培训课件视频
- 2025年滁州市来安县招聘社区专职工作者考试笔试试题(含答案)
- 注册安全工程师课件辅导
- 【1500吨年产量的对氯苯甲醛合成工艺设计8700字(论文)】
- 2025年河北廊坊市直事业单位招聘工作人员256人笔试历年典型考题及考点剖析附带答案详解
- 2025年医学综合素质考试题及答案
- 电大市场营销试题及答案
- 浙江省台州市2024-2025学年高一下学期6月期末质量评估物理试卷(图片版含答案)
- 支气管肺炎的说课
- 《半年护理工作回顾与改进》课件
- 2025年营销管理课程考试试卷及答案
- 设备技改异动管理制度
评论
0/150
提交评论