福田轻型货车制动系统设计【图纸丢失,只有论文】_第1页
福田轻型货车制动系统设计【图纸丢失,只有论文】_第2页
福田轻型货车制动系统设计【图纸丢失,只有论文】_第3页
福田轻型货车制动系统设计【图纸丢失,只有论文】_第4页
福田轻型货车制动系统设计【图纸丢失,只有论文】_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

买文档就送您 纸全套, Q 号交流 401339828 或 11970985 I 摘  要  制动系统是汽车中最重要的系统之一。因为 随着高速公路的不断发展, 汽车的车速将越来越高 , 对制动系的工作可靠性要求日益提高 ,制动系工作可靠的汽车能 保证行驶的安全性。 由此可见, 本次制动系统设计具有实际意义。  本 次设计主要是对 轻型货车 制动系统结构进行 分析的基础上 ,根据 对 轻型货车制动系统的要求,设计出合理的符合国家标准和行业标准的制动系统。  首先 制动系统设计是根据整车主要参数和相关车型 ,制定出制动系统的结构方案, 其次 设计计算确定前、后鼓 式制动器、制动主缸的主要尺寸和结构形式 等 。最后 利用计算机辅助设计绘制 出了前、 后制动器装配图、制动主缸装配图、制动管路布置图。 最终 对设计出的制动系统的各项指标进行评价分析。 另外在设计的同时考虑了其结构简单、工作可靠、成本低 等因素。结果表明设计出的制动系统是合理的、符合 国家 标准的。  关键词: 轻型货车 ;制动;鼓式 制动器;制动主缸;液压系统 . 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 is of in  of on of of a of of is of of on of s a is in to of of of so of of of of is it in as is 文档就送您 纸全套, Q 号交流 401339828 或 11970985   录  第 1 章  绪  论  . 1 次制动系统设计的意义  . 1 次制动系统应达到的目标  . 2 次制动系统设计内容  . 2 车制动系统的组成  . 3 动系统类型  . 3 动系工作原理  . 3 第 2 章  汽车制动系统方案确定  . 5 车制动器形式的选择  . 5 式制动器的优点及其分类  . 6 式制动器的缺点  . 7 动驱动机构的结构形式  . 8 单制动系  . 8 力制动系  . 8 服制动系  . 9 动管路的形式选择  . 10 压制动主缸方案的设计  . 11 第 3 章   制动系统主要参数的确定  . 13 型货车主要技术参数  . 13 步附着系数的0的确定  . 13 、后轮制动力分配系数 的确定  . 14 式制动器主要参数的确定  . 14 动器制动力矩的确定  . 15 动器制动因数计算  . 16 式制动器零部件的结构设计  . 17 第 4 章液压制动驱动机构的设计计算  . 21 动轮 缸直径 d 的确定  . 21 动主缸直径 . 21 动踏板力. 22 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 动踏板工作行程 . 22 第 5 章  制动性能分析  . 23 动性能评价指标  . 23 动效能  . 23 动效能的恒定性  . 23 动时汽车的方向稳定性  . 23 、后制动 器制动力分配  . 24 面对前、后车轮的法向反作用力  . 24 想的前、后制动器制动力分配曲线  . 25 际的前、后制动器制动力分配曲线  . 25 动距离 S . 25 车能够停留在极限上下坡角度计算  . 26 第 6 章  总  结  . 27 参考文献  . 27 致谢  . 29 附  录 1 . 29 附  录 2 . 36 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 1 第 1章  绪  论  汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。所以重视发展汽车工业  ,有着深远的现实意义。  随着我国经济的发展,尤其我国对外贸易的不断扩大,汽车工业受到国外同行业的强烈竞争,而我国汽车工业起步比较晚,生成技术水平较低,因而改进和提高我国的汽车性能及其机构是一个 迫在眉睫的问题,这关系到我国汽车工业的生存与发展的大事。  汽车的行驶速度是汽车的一个重要性能参数。尽可能提高汽车的行驶速度,是提高运输生产率的主要技术措施之一  ,但必须保证行驶的安全性为前提。因此在道路宽阔平坦,人流和车流又较小的情况下,汽车可以用高速度行驶,而在转向或者行驶在不平路面或两车交会时,都必须降低车速,特别是在遇到障碍物,或者碰撞行人或其他车辆危险时,更需要在尽可能短的距离内将车速降低到最低,甚至为零。如果汽车不具备这一性能,高速行驶就不可能实现。  汽车在下长坡时,在重力作用下,有不断加速到危险 程度的倾向,此时应当将车速限制在一定的安全性以内  ,并保持稳定。  此外对已停驶的汽车,应使其可靠的驻留在原地不动。  上述使行驶中的汽车减速甚至行车,使下坡行驶的汽车速度保持稳定,以及使已静止的汽车保持不动,这些作用叫做制动。保证这些性能的系统叫制动系统  因此对汽车制动系统的研究,开发是汽车工业的一个非常重要的课题,如何改善汽车的制动效能,改善制动器的结构使一个重要环节。  次 制动系统设计的意义  在交通运输中,公路运输日益成为主要的交通运输形式。高速公路的快速发展使汽车运输速度加快。但是,在提高车速 的同时,汽车应能够及时地制动,减速,停车。特别是在人流、车流比较大的道路上行车,安全行驶是最重要的前提条件。 对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装买文档就送您 纸全套, Q 号交流 401339828 或 11970985 2 置以便 驾驶员能根据道路和交通情况,利用装在汽车上的一系列专门装置,迫使路面在汽车车轮上施加一定的与汽车行驶方向相反的外力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,用 于产生制动力的一系列专门装置称为制动系统。  制动系统的作用:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下稳定驻车;使下坡行驶的汽车速度保持稳定。            制动系直接影响着汽车行驶的安全性和停车的可靠性。  本设计通过合理的结构分析,制动器形式的确定,并进行了科学合理的计算及结构设计,缩短了制动距离、保证制动系统具 有良好的制动效能的热稳定性 以及良好的操纵稳定性,对保证制动系统工作可靠具有理论与实际意义。  次 制动系统 应达到的目标  1)具有良好的制动效能 ;  2) 工作可靠 ;  3) 在任何速度下制动时,汽车都不应丧失操纵性和方向稳定性 ;  4)制动能力的热稳定性良好 ;  5)作用滞后性应尽可能好 ;  6)摩擦衬片(块)应有足够的使用寿命 ;  7)摩擦副磨损后,应有能消除因磨损而产生间隙的机构,且调整间隙工作容易,最好设置自动调整间隙机构 。  次 制动系统设计 内容  1)制动系统参数计算及制动器结构设计;   2)制动主缸计算与结构设计;   3)制动管路布置设计;  4)制动力分配计算编程。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 3 车制动系统的组成  1)供能装置 包括供给、调节制动所需能量以及 改善传能介质状态的各种部件。其中产生制动能量的部分称为制动能源。人的肌体也可作为制动能源。  2)控制装置 包括产生制动动作和控制制动效果的各种部件,如制动踏板、制动阀等。  3)传动装置 包括将制动能量传输到制动器的各个部件,如制动主缸和制动轮缸等。  4)制动器 产生 阻碍车辆的运动或运动趋势的力的部件。  较为完善的制动系统还具有制动力调节装置、报警装置、压力保护装置等附加装置。  动系统 类型  1)按制动系统的功用分类  ( 1)行车制动系统 使行驶中的汽车减低速度甚至停车的一套专门装 置。  ( 2)驻车制动系统 使已停驶的汽车驻留原地不动的一套装置。  ( 3)第二制动系统 在行车制动系统失效的情况下保证汽车仍能实现减速或停车的一套装置。  ( 4)辅助制动系统 在汽车下长坡时用以稳定车速的一套装置。  2)按制动系统的制动能源分类  ( 1)人力制动系统 以驾驶员的肌体作为唯一制动能源的制动系统。  ( 2)动力制动系统 完全依靠发动机动力转化成的气压或液压进行制动的制动系统。  ( 3)伺服制动系统 兼用人力和发动机动力进行制动的制动系统。  按照制动能量的传输方式,制 动系统又可分为机械式、液压式、气压式和电磁式等。同时采用两种传能方式的制动系统可称为组合式制动系统 。  动系工作原理  一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上又装有一般是非金属的摩擦片。 制动底板上还装有液压制动轮缸,用油管与装在车架上的液压制动主缸相连通。主缸中的活塞可由驾驶员通过制动踏板来操纵。  制动系统不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持由一买文档就送您 纸全套, Q 号交流 401339828 或 11970985 4 定的间隙,使车轮和制动鼓可以 自由转动。 制动系统看图 1使行驶中的汽车减速,驾驶员应踩下制动踏板,通过推杆和主缸活塞,使主缸内的油液在一定压力下流入轮缸, 并通过两个轮缸活塞推动两制动蹄绕支撑销转动,上端向两边分开而以其 摩擦片压紧在制动鼓的内圆面上。这样,不旋转的制动蹄就对旋转的制 动鼓作用一个摩擦力矩,其方向与车轮行驶方向相反。制动鼓将该力矩传 到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的圆周力,同时路面也对车轮作用着一个向后的反作用力,即制动力。制动力由车轮经过车桥和悬架传给车架及车身 ,迫使整个汽车产生一定的减速度 ,制动力越大,则汽车减速度越大。当放开制动踏板时,复位弹簧将制动蹄拉回复位,摩擦力矩和制动力消失,制动作用即行终止。  1动系统图  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 5 第 2章   汽车制动系统 方案确定  汽车制动系统的设计是一项综合性、系统性的设计,它涉及到制动系统的整体设计和零件设计,设计要求中既体现了对整体的要求,又有对各零件各自性能的要求。  对制动系整体性能,除了上面所说的以外,还有使用性能良好,故障少等要求。对零部件除了能实现各自功能外,还要求它与其他组装起来的配合能力,协作能力 良好,因此,在制动系统设计前,应先提出制动系统综合设计方案。  车制动器形式的选择  1) 制动器按其直接作用对象的不同可分为车轮制动器和中央制动器。前者的旋转元件固定装在车轮或半轴上,即制动力矩直接作用在两侧车轮上。后者的制动力矩必须经过驱动桥在分配到两侧车轮上。车轮制动器一般用于行车制动,也有兼用第二制动和驻车制动的。中央制动器用于驻车制动,其优点式制动力矩须经过驱动轴放大后传到车轮。因而容易满足操纵手力小的要求,但在应急制动时往往造成传动轴超载。现在,由于车速高,对应急制动的可靠性要求更严格。在中 、高级轿车及总重在 15在后轮制动器上附加手动机械驱动机构,也不再设置中央制动器。  2)制动器所用张开式装置的型式可分为液压轮缸、非平衡式凸轮式、平衡凸轮式、楔块式机械张开机构  3) 制动系按制动能量的传输方式  制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。  本次设计的轻型货车采用的是液压式制动系统。  4) 一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使 汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器 就其摩擦副的结构型式 可分为鼓式和盘式 带式三 大类。他们的区别在于前者的摩擦副中的旋转元件为制动鼓,其圆柱面为工作表面;后者的摩擦副中的旋转元件为圆盘壮制动盘,其端面为工作表面。 带式之用做中央制动器。  本次设计轻型货车制动器为双鼓式液压轮缸式制动器  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 6  式制动器的优点 及其分类  鼓式制动器具有自刹作用:由于刹车时令蹄片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度,刹车时蹄片外张力 (刹车制动力 )越大 ,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别只有大型车采用气 动辅助 ,而小型车采用真空辅助来帮助刹车。  鼓式制动器制造技术要求比较低,因此制造成本要比碟式刹车低。所以本次设计所采用的制动器为鼓式制动器。  鼓式制动器有内张型和外束型两种。前者的制动鼓以内圆为工作表面,应用广泛。后者制动鼓的工作表面则是外圆柱面,应用较少。  鼓式制动器按蹄的类型还分为领从蹄式制动器 如图 a,双领蹄式 如图 b,双向双领蹄式 如图 c,双从蹄式 如图 d,单向自增力式 如图 e,双向自增力式制动器 如图 f。 比较各种制动器的效能因数于摩擦系数可知:增力式制动器效能最高、双领蹄次之、领从蹄又次之、而双从蹄效能最低。但若就效能因数稳定性而言,名词排列正好相反,双从蹄最好,增力式最差。  双领蹄式制动器正向效能相当高,但倒车时则变成双从蹄式,效能大降。很多中级轿车的前轮制动器采用双领蹄式,这是由于这类汽车前进制动时前轴的动轴荷及附着力大于后轴,倒车制动时则相反,正与这种制动器的特点相适应。  双向双领蹄式制动器在  前进和倒退制动时效能不变,故广泛应用于中,轻型货车及部分轿车的前后轮。但用作后轮制动器时需另设中央制动 器。  双领蹄式制动器荷双向双领蹄式制动器中有两个轮缸。双领蹄式制动器两蹄片各有其固定支点,并用各具有一个活塞的两个轮缸张开蹄片。双向双领蹄式制动器,两蹄片浮动。用各有两个活塞的轮缸张开双蹄片。与双领蹄式制动器比较,双向双领蹄式制动器的特点式制动鼓无论朝哪个方向转动,制动效能都不变。  增力式制动器的两蹄片之间相互连接,两蹄都式领蹄,次领蹄的轮缸张开后的作用效果很西欧啊或次领蹄的轮缸不存在张开。然而由主领蹄的自行增势作用所造成且比主领蹄张开力后大得多的支点反力 F 传到次领蹄的下端,成为次领蹄的张开力,采用增力式制 动器后,及时制动驱动机构中不用伺服装置,也可以借很西欧啊的踏板力得到很大的制动力矩。但因其效能大不稳定且效能因数太高容易发生制动自馈,故设计时应妥善选择几何参数, 把 效能因数限制在一定程度,且需选用摩擦性能稳定的摩擦片。  单向增力时制动器在倒车制动时效能大为降低,之有少数轻,中型货车和轿车用作前轮制动器。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 7 此外,双领蹄式制动器,由于其结构呈中心对称,因而领蹄对鼓作用的合力恰好相互平行,属于平衡式制动器。领从蹄与其他型式制动器均不能保证这种平衡,是非平衡式制动器。非平衡式制动器将对轮毂轴成造成附加径向载 荷而且领蹄或次领蹄摩擦片表面单位压力大于从蹄磨损较严重,为使衬片寿命均衡可将从蹄式的衬片包角适当减小。  由于本次设计的是轻型货车制动器,汽车在制动时轴荷要前移原理 前轮的制动力应大于后轮,如果后轮制动力大于前轮且先制动于后轮即后轮先抱死时汽车将出现制动跑偏或侧滑现象,这将极易造成严重的交通事故!所以本次设计前轮选用双增力式鼓式制动器,后轮选用领从蹄式鼓式制动器。   式 制动器 的缺点  盘式制动器的缺点:  1)效能较低。故用于汽车制动时所需制动促动管路压力较高。一般用于伺服装置  2)难以完全防止尘污和锈蚀  3)兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂。  盘式制动器又称为碟式制动器,这种制动器 兼作驻车制动器时,所需附加的买文档就送您 纸全套, Q 号交流 401339828 或 11970985 8 手驱动机构比较复杂 ,摩擦片的耗损量较大,成本贵, 衬块工作面 小 ,磨损快,使用寿命短,需要用高材质的衬块 ,需要的制动液压高,必须要有助力装置的车辆才能使用,所以只能适用于轿车和一些微型车上,不适合用于货车上 ,因此我们选用鼓式制动器。  动驱动机构的结构 形式  制动驱动机构用于将驾驶员或 其它力源的力传给制动器 ,使之产生需要的制动转矩。  制动系 统 工作的可靠性在很大程度上取决于制 动驱动机构的结构和性能。所以首先 保证 制动驱动机构工作可靠 性 ;其次是制动 力 的产生和撤除都应尽可能快,充分发挥汽车的制动性能;再次是 制动驱动机构 操纵轻便省力;最后是加在踏板上的力和踩下踏板的距离应该与制动器中产生的制动 力矩 有一定的比例关系。 保证汽车在最理想的情况下产生制动力矩。  根据制动力源的不同,制动驱动机构一般可以分为简单制动、动力制动和伺服制动三大类。  单制动系  简单制动系即人力制动系,是 单 靠驾驶员作用于制动踏板上或手柄上的力作为制动力源,而力的传递方式又有机械式和液压式两种。  机械式的靠杆系 或钢丝绳传力,结构简单,造价低廉,工作可靠,但机械效率低, 传动比小,润滑点多,且难以保证前后轴制动力的正确比例和左右轮制动力的均衡所以在汽车的行车制动装置中已被淘汰。 因为这种方式结构简单、经济性好, 工作可靠等优点广泛地应用于中,小型汽车的驻车制动器中。  液压制动用于行车制动装置。制动的 优点是作用滞后时间短 (工作压力大 (可达 1012缸径尺寸小,可以安装 在制动器内部作为制动蹄的张开机构或制动块的压紧机构, 而不需要制动臂等传动件。这样就减少了非黄载质量。液压制动也有器缺点。 主要是过度受热后会有一部分制动液液化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效,液压制动广泛应用在轿车,轻型货车及一 部分中型货车上。  力制动系  动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源,驾驶员施加于踏板或手柄上的力仅用于回路中的控制元件的操纵。从而可式踏板力较小,同时又又适当的踏板行程。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 9 ( 1)气压制动系   气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装 置结构简单、连接和断开均很方便,因此被广泛用于总质量为 8t 以上尤其是 15t 以上的载货汽车、 越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长 (因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件 继动阀 (即加速阀 )以及快放阀;管路工作压力较低 (一般为 因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄, 使非簧载质量增大;另外,制动气室排气时也有较大噪声。  ( 2)气顶液式制动系  气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为 9t 11 ( 3)全液压动力制动系  全液压动力制动系除 了 具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采 用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。  服制动系  伺服制动系 是在人力液压制动系中增加由其他能源提供的助力装置,使人力与动力并用。在正常情况下,其输出工作压力主要由动力伺服系统产生,而在伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货车上得到了广泛的应 用。  按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分。其伺服能源分别为真空能 (负气压能 )、气压能和液压能。  综上所述,经过比较与分析,本次设计轻型货车采用液压传动。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 10 动管路的形式 选择  为了提高制动驱动机构的工作可靠性,保证行车安全, 制动管路一般都采用分立系统,即全车的所有行车制动器的液压或气压管路分属于两个或更多的相互隔绝的回路。这样,即使其中 一个 回路失效后,另一个回路仍然可以起作用。一般多设计成双回路。  下图为双轴汽车的液压式制动驱动机构的双回路系统的 5 种分路方案图 。选择分路方案时,主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。  ( a)        ( b)           ( c)          ( d)          ( e)  图 2 2 双轴汽车液压双回路系统的 5 种分路方案图  1 双腔制动主缸 2 双回路系统的一个回路 3 双回路系统的另一分路  图 2 2( a) 为 一轴对一轴 轴制动器与后桥制动器各用一各回路 。其特点 是管路布置最为简单,可与传统的单轮缸鼓式制动器相配合使用,成本较低,目前在各类汽车特别使商用车上用的最广泛。对于这种形 式,若后轮制动回路失效,则一旦前轮抱死即极易丧失转弯制动能力。 对于采用前轮驱动因而前轮制动强于后轮的乘用车,当前制动回路失效而单用后桥制动时,制动力将严重不足,并且,若后桥负荷小于前轴负荷,则踏板力过大时易使后桥车轮抱死而汽车侧滑。  图 2 2( b) X 型 的结构也很简单 , 直行制动时任一回路失效, 剩余的总制动力都能保持正常值的 50%, 但是,一旦某一管路破损造成制动力不对称,此时前轮超制动力大的一边绕主销转动,使汽车丧失稳定性。因此这种方案适用于主销偏移距为 ( 达 20汽车上,这时 , 不平衡的制动力使车轮反向转动 ,改善了汽车稳定性。  图 2 3( c) 一轴版对半轴 两侧前制动器的半数轮缸和全部后轮制动买文档就送您 纸全套, Q 号交流 401339828 或 11970985 11 器轮缸属一个回路,其余的前轮缸属另一回路。  图 2 4( d) 半轴一轮对半轴一轮 两个回路分别对两侧前轮制动器的半数轮缸和一个后轮制动器器作用。  图 2 5( e) 双半轴对双半轴 每个回路均只对每个前、后制动器的半数轮缸器作用。 这种形式的双回路制动效能最好。   较复杂。 、后制动力的比值均与正常情况下相同, 剩余的总制动力可达到正常值的 50%左右。单用 一轴半回路时剩余制动力较大, 但此时与 一样,紧急制动情况下后轮极易先抱死。  综合各 个 方面的因素和比较各回路形式的优缺点。 本次设计 选择了 为一轴对一轴 压 制动主缸 方案 的设计  为了提高汽车的行驶安全性,现代汽车的行车制动装置均采用双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,因此用与单回路制动系的单腔制动主缸已被淘汰。制动主缸由灰铸铁制造,也可以采用低碳钢冷挤成形;活塞可用灰铸铁,铝合金或中碳钢制造。  主缸的作用是将驾驶员踩到制动踏板上的压力传递到四个车轮的制动器以使汽车停车。主 缸将驾驶员在踏板上的机械压力转变为液压力,在车轮制动器处液压力转 ( 变为机械力。主缸利用液体不可压缩原理,将驾驶员的踏板运动传送到车轮制动器。主缸由储液罐和主缸体构成。储液罐提供主缸工作的制动液。现在的所有储液罐都是分体设计,即两个独立的活塞有两个独立的储液区域。分体设计分别为前轮和后轮,或一个前轮一个后轮的液压系统供液,以防一个液压系统失效影响另一个液压系统。本次设计采用的制动主缸为串列双腔制动主缸。  如图 所示, 该主缸相当于两个单腔制动主缸串联在一起而构成。储蓄罐中的油经每一腔的 进油 螺栓和各自旁通孔、补偿孔 流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。  主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自得旁通孔和补偿孔之间。  当踩下制动踏板时,踏板传动机构通过 制动 推杆 15 推动后腔活塞 12 前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞 7 前移,前腔压力也随之升高。当继续踩下制动踏板时,前、后腔的液压继续提高,使前、后制动器制动。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 12 撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液 在 压力 作用下 推开回油阀 流 回主缸,于是解除制动。  若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞 7 迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞 12 前移,而不能推动前缸活塞 7,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活 塞前移,使前缸工作腔建立必要的液压而制动。  由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时, 串联双腔制动 主缸 的另一腔 仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。 大大提高了工作的可靠性。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 13 第 3 章   制动系统主要参数的确定  型货车 主要技术参数  设计参数:  整车质量:满载: 5200载: 2200心位置: a=b=重心高度:  载 )载)   轴距: L=距 : B=胎规格 : 16   步附着系数的0的确定  轿车制动制动力分配系数 采用恒定值得设计方法。  欲使汽车制动时的总制动力和减速度达到最大值,应使前、后轮有可能被制动同步抱死滑移,这时各轴理想制动力关系为   G       ( G) /(式中: 前轴车轮的制动器制动力  后轴车轮的制动器制动力  G:汽车重力  车质心至前轴中心线的距离  车质心至后轴中心线的距离  车质心高度  由上式可知,前后轮同时抱死时前、后轮制动器制动力是 的函数,如果汽车前后轮制动器制动力能按 能保证汽车在不同的附着系数的路面制动时,前后轮同时抱死。  然而,目前大多数汽车的前后制动器制动力之比为定值。常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,并以符号  来表示,即   =  当汽车在不同 值的路面上制动时,可能有以下 3 种情况。  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 14 1)当 0时, 线在 动时总是前轮先抱死。这是一种稳定工况,但在制动时汽车有可能丧失转向能力,附着条件没有充分利用。  2)当 0时, 线在 动 时总是后轮先抱死,因而容易发生后轴侧滑使汽车失去方向稳定性。  3)当 =0时,前、后轮同时抱死,是一种稳定的工况,但也失去转向能力。  前、后制动器 的 制动器制动力分配系数影响到汽车制动时方向稳定性和附着条件利用程度。要确定 值首先要选取同步附着系数0。  根据汽车知识手册查表得 一般货车取0=次轻型货车设计取取0= 、后轮制动力分配系数 的确定  根据公式: 制动力分配系数 =( b+0 : =( 1600+820) /3600=中   0:同步附着系数  b :汽车重心至后轴中心线的距离  L:轴距  车质心高度   式制动器主要参数的确定  1)制动鼓 直径 D 轿车 D/ 货车 D/里选 D/r=16=以,前 后轮制动鼓 直径 D=330) 摩擦衬片宽度 包角  制动鼓半径 擦衬片的宽度 衬片的摩擦面积 p 越大则制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好 定的轻型总重量 200 000= 汽车设计书 得 50250 (   所以选取 20 由   b=85擦衬片起始角  买文档就送您 纸全套, Q 号交流 401339828 或 11970985 15 0= 2=   3) 制动器中心到张开力 e 在保证轮缸或制动凸轮能够布置于制动鼓内的条件下,应使距离 提高制动效能。 e=) 制动蹄支承点位置坐标 a和 c =c=30) 整车制动性能  同步附着系数0按公式计算  0=(L 重心高   =( b+ 0 : =( 1600+20) /3600=(3600 820=)制动器的温升计算  制动时,由于制动鼓和摩擦片之间作用,产生了大量的热。在紧急制动时,因时间短, 热量 来不及散到大气中去,几乎全被制动鼓所吸收使之温度升高。  实践表明,从速度 0km/h 紧急制动到完全停车制动鼓的温升不应超过15  其温升按下式计算 :  t= G a v a 2 /( 108458 =(500 安装助力装置  动踏板工作行程 0(0201 1 主缸推杆与活 塞的间隙,一般取 2  02 主缸活塞空行程,即主缸活塞由不工作的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程; 取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论