钢筋的非线性模型和后张法预应力混凝土梁外文翻译.doc_第1页
钢筋的非线性模型和后张法预应力混凝土梁外文翻译.doc_第2页
钢筋的非线性模型和后张法预应力混凝土梁外文翻译.doc_第3页
钢筋的非线性模型和后张法预应力混凝土梁外文翻译.doc_第4页
钢筋的非线性模型和后张法预应力混凝土梁外文翻译.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业设计(论文)外文翻译译文本科毕业设计(论文)外文翻译译文 钢筋的非线性模型和后张法预应力混凝土梁钢筋的非线性模型和后张法预应力混凝土梁 -p.范宁 爱尔兰都柏林大学土木工程系讲师 摘要摘要 商业有限元软件一般包括混凝土在荷载作用下的非线性反应的专用数值模型。这 些模式通常包括一种针对混凝土抗拉强度相对较弱的开裂类推法,一种混凝土在 压缩功能区内容易破碎的可塑性算法和一种详细说明任何内部增援的数额、分配 和方向的方法。该数值模型采用的是 ansys 的论述。在 ansys 中,介绍了适 当的数值预报模式的策略并针对普通钢筋混凝土梁和后张预应力混凝土 t 型梁, 对比试验载荷-挠度反应做了讨论。 关键词关键词 混凝土;后张法预应力;有限元建模。 1 导言:导言: ansys 的钢筋混凝土模型的钢筋混凝土模型 在有限元分析程序中执行非线性材料法规,是软件开发业的两种一般处理方 式之一。初审材料是被指定的独立编程的要素。用这种方法为某一特定的物理系 统选择元素,是不受限制的,而且最佳的应用于实践的建模技术,用于确定一个 适当的元素类型,使得在其中的任何一个范围内,非线性材料性能能被合理分配。 这是最通用的做法,并且也没有限制分析师必须对特定元素类型的配置问题感兴 趣。尽管这样,但某些软件开发商提供具体的专业非线性材料的能力不够,只拥 有专用元素类型。ansys 1 提供了一个专门的三维立体 8 节点固体等参单元, solid65 ,以 willam 和 warnke 2 共同建立的一个三维形态的混凝土基本模型为 基础模拟脆性材料的非线性反应。 该要素包括一种在张力区内产生断裂的抹黑开裂类推法和一种在压缩区内计 算混凝土破碎的可能性的可塑性算法。在开裂和破碎的每个单元有 8 个集成点执 行检查工作。这一要素以一种线性弹性方式运转,直到指定拉伸的一方或压缩力 量超载。一个单元的开裂或压碎一旦开始,在一个要素的结合点处,这个要素的 主要重压中的某个就会超过混凝土的拉伸或压缩强度。破裂或压碎地区,和相对 于不连续的破裂一样,然后形成垂直于有关主应力方向连同那些重压被局部地分 配。该元素是非线性的,因此,需求一个迭代求解。在数控例程中,一个破裂的 形成是通过在必要的主应力方向上有缺陷的一个平面的该要素的应力应变关系的 改变形成的。在一个破裂区,穿过一个断裂剪转移的结果在充分剪转让和不剪转 移之间可以是多种多样的。破碎算法俨如一个可塑性法,即一旦有一节已粉碎, 朝着这个方向发展的任何进一步的应用负载就会在不断的压力下增加作用力。继 一个初始裂纹形成之后,触及破裂表面的重压可能造成第二个或第三个裂纹等在 一个结合点上发展延伸。 内部钢筋可作为一种通过在一个指定的方向的分布式的一个要素或者用离散 杆或梁单元交替连接到固体分子上的额外抹黑刚度来模拟。梁分子将允许内部加 固以发展剪应力,但由于这些因素,在 ansys 中,是线性的,没有塑性变形的 钢筋也是可能的。该抹黑刚度和纽带模型选择允许加固的弹塑性反应被包括在不 惜牺牲剪切刚度的钢筋仿造物中。 2 测试用例梁测试用例梁 一般的钢筋和后张法预应力混凝土梁的最终负载测试的结果被用来评估钢筋 混凝土模型在预测钢筋混凝土梁的最终的反应中实施 ansys 是否适合。 3.0 米长通常钢筋混凝土梁 穿过 3.0 米长梁的一个横断面,图 1,说明了内部加固。三根直径 12 毫米钢 筋连同两根作为压缩钢的 12 毫米的钢筋被列入张力区。10 个剪切环节产生 6 毫 米轻度钢筋,分别提供给剪切跨度中的 125 毫米剪切加固中心。对两道梁进行测 试,其中每道梁都能支持一个清晰的 2.8 米的跨度和对称又单调的负载,根据位 移控制,在弯曲的四点以及跨中位置 0.3 米点荷载的两侧,是要失败的。根据英 国的标准,横梁中心部位的柱面分裂 3 和压碎试验 4 被担保能查明混凝土单向 轴向拉伸和压缩力。(分别为 ft = 5.1n/mm2 和 fc = 69.0n/mm2),以及混凝土的 杨氏模量, 5 ,( 39200 n/mm2 ),列入该数值模型。对钢筋和剪连接样品的 拉伸试验也如此被承诺,他们的非线性塑胶反应,可准确地在数值模型中模拟。 9.0 米只要三分之一规模预应力梁 6 30 米长的预应力混凝土梁的三分之一比例模型的一个横断面和立视图的测试 是在斯洛文尼亚的国家建筑及土木工程研究所,斯洛文尼亚卢布尔雅那示于图 2 。t 型梁的梁缘是 1.1 米宽 0.08 米深,而网路是一根梁缘为 0.29 米宽和 0.6 米总 深的 i 型钢。除了普通的钢筋,三根压浆 0.6 “ ( 15.2 毫米)蹄筋,每根由 7 5.08 毫米直径电线组成,被用于承载每束梁的后张力。对钢筋及肌腱的拉伸试验 和具体确定相关的材料性能的线性与非线性的强度和刚度试验,都是为了完成 数值模型。 当偏离的和有差错的数据在混凝土表面和个人电缆上被监测到的时候,横梁 就会装载失败,承载布置如图 3 所示,并在所有情况下,最早被应用的均匀分布 载荷连同点载荷 p1 和 p2 被应用在以后逐渐递增直至达到横梁的极限负载。 图 1 :3.0 米梁截面细节 图上译文:压缩钢 2 no.12 毫米高预制钢筋,fy = 460n/mm2 剪连接 6 毫米软质钢连接,fy = 250n/mm2 (只是在剪切跨度 中位于 125 毫米中心的 10 个连接) 张力钢 3 no.12 毫米高预产钢筋,fy = 460n/mm2 998 cm 30302929 60 8 110 29 图图 2 :后张法预应力梁的高和断面模型:后张法预应力梁的高和断面模型 334,5 50 43 163 50 154,5 43 14,5 46 15 56 15 266 p2 = 43%p p1 = 57%p q = 3,3 kn/m 30 30 50 14,5 71 499 499 14 14 q = 3,3 kn/m 图图 3 :负载布置:负载布置 3 有限元建模策略有限元建模策略 规定包括获得在 ansys 中后张力和普通钢筋梁使用专用 solid65 单元的最终 反应的钢筋混凝土的非线性反应。存在的对称平面,两个作为 3.0 米横梁和一个 用于预应力梁,其结果只有四分之一和一半的模型被分别要求。有限元钢筋网划 分为 3.0 米梁被绘制在图 4 而钢筋网作为预应力梁列于图 5 。 以 3.0 米梁为蓝本的内部加固,被模拟应用于可塑性三维晶石元素, link8 , 内嵌了坚固的钢筋网。这一方案因其在保持混凝土介质周围相对较粗的钢筋网的 同时允许固定物被精确的安置而得到了多于供选择的抹黑钢度性能的偏爱。内在 的假设是,在钢筋和混凝土之间有足够的具有兼容性的取代,以及没有任何粘合 滑动。该模型是有负载的,通过应用位移来方便衔接,其方式符合试验方案。 在为后张法预应力梁制定模型的过程中,可塑性三维晶石元素, link8,被用 于后张电缆(原始钢筋),同时使用替代分布式抹黑钢度的办法来模拟内部钢筋。 后张力是经钢筋束元素中的一种初始张力模拟的,类似于在一个初负荷阶段的钢 筋束拉伸力。接下来,均匀分布载荷在第二负荷阶段被详细说明,这个阶段要先 于符合试验数据但模型被负荷重压导致失败的第三个阶段。 图图 4 : 3.03.0 米梁米梁- -有限元钢筋网(选定的混凝土构件被拆除,以说明内部加固)有限元钢筋网(选定的混凝土构件被拆除,以说明内部加固) 图图 5 :后张法预应力梁:后张法预应力梁- -有限元钢筋网有限元钢筋网 4 比较试验和数值模拟结果比较试验和数值模拟结果 从测试计划来看,3.0 米横梁的负载偏转反应被划分为有限的要素,结果见 图 6。该数值模型预测到一个 66.1kn 的极限荷载并很好地捕获了试验失败的横梁 的非线性负载偏移反应。在测试中达到的极限负载分别是 66.18kn 和 66.7kn 。很 明显,直到第一个裂缝已形成约 17kn 时形成的数值模型是线性的。虽然横梁的 实测反应是原始的,不够强烈的,但第一可见裂缝也出现在大约 17kn 处。除了 这一点,有限元模型的几乎所有线性反应都是符合测试数据的。传统混凝土理论 7 ,预言拉长的钢筋可以展开约 59kn,这与试验和数值横梁的荷载挠度反应在 坡度上的改变是一致的。 记录在测试中的 3.0 米横梁的极限跨中挠度是 45mm。在数值模型中内部钢 筋塑性变形的解决方案没能收到预期的超出跨中约 27 毫米的挠度。实验中的裂 纹分布在跨中(所显示的钢筋束的左手边)而裂缝分布被有限元模型(右边)所 预测,情景见图 7 。有限元模型预测的弯曲裂缝,形成了 90 度的转折,并一 直延长穿过因压缩面的接触而变得越来越不统一之前的横梁深处。这在试验横梁 中也可以看出。但是使用抹黑裂缝模型并不能捕获弯曲裂缝的离散性。使用数值 模型预测的失败模式是一个失败的弯曲模式,符合测试反应,也致使在拉伸的钢 筋中延伸出更多的可塑性张力。 后张法预应力 t 型梁的负载偏转反应是通过数值模型精确捕获的(见图 8 )。 在数值模型中达到的极限负荷 231kn 是 264kn 极限试验负荷的 12 。对横梁的 顶部和底部面的测试过程中,具体的拉力被测量出来,测试的过程可比较图 9 中 的计算结果。实验和数值数据之间的相关性轻松达到预想的拉力标准的拉力极限 百分之一。 在横梁试验中失败的模式是一个中心轴上升到后张电缆和内部钢筋达到并最 终超过的位置的弯曲模式。尽管如此,数值模型中预测的张力要比在失败的预测 方案中和因为在钢筋束及增加的加固物中的拉伸力,弯曲裂缝穿入土梁的深处而 使数值模型变得不稳定的张力一样有所轻微下降。 0 20 40 60 80 0102030405060 deflection at midspan (mm) applied load (kn) beam 1beam 2fe model 图图 6 3.0 米横梁米横梁-实验和有限元荷载偏移反应实验和有限元荷载偏移反应 注:pplied load:实际荷载 deflection at midspan:以毫米为单位偏移 数值的摸黑裂缝组成的平行的到垂直的断裂线 图图 7 失败的实验和有限元裂缝分布失败的实验和有限元裂缝分布 0 100 200 300 050100150200250300 deflection at midspan (mm) applied load (kn) fe modeltest 图图 8 后张法预应力试验和有限元负荷偏移反应后张法预应力试验和有限元负荷偏移反应 0 100 200 300 -0.500.511.52 strain (%) applied load (kn) fe model toptest top fe model bottomtest bottom 表表 9:后张法预应力试验和有限元负荷偏移反应:后张法预应力试验和有限元负荷偏移反应 5 讨论讨论 3.0 米普通钢筋束和后张法预应力梁的数值模型在这两种情况下均符合测试结 果。明显的,试验和数值数据的相关性取决于精确线性和非线性材料特性的恰当 分配。一般地,为同一目的,新的结构和内核的混凝土样本的混凝土压碎试验通 常在评估现有结构的时候被采用。杨氏模量测量拉伸强度和钢度的柱面分裂测试 一般都较复杂,而且它对为评估混凝土的抗拉强度和杨氏模量而使数值模拟方法 被普遍采用来评估现有的经验法则具有启发性。 休斯 8 提出,混凝土的杨氏模量是和其抗压强度相关的: ec = 9100 (fcu)1/3 在这种情况下,休斯 8 产生了一个 37324n/mm2的杨氏模量,而 37324n/mm2 是在 39200n/mm2 的平均测值的 5%以内的。 钢筋混凝土 9 的英国标准是从已知的压缩强度估计混凝土抗拉强度的: ft = 0.36 (fcu)1/2 并为混凝土立方体强度预测了一个 2.99n/mm2的抗拉强度,fcu = 69 n/mm2。使用柱面分裂试验测量的混凝土拉伸强度值是 5.1n/mm2。虽然明显低于 混凝土的实测拉伸强度,但混凝土梁往往出现裂缝而迫使钢筋进行一些拉应力的 极限反应的预测还是有影响的。 一般给出的混凝土的压缩强度通常可能是达到一套被纳入非线性数值模型的 实用材料数值。在该钢筋环境中情况并非如此清晰。一般的,加固物的名义强度 是被指定的,而且这是假定在它拥有一个理想弹塑性方式的设计中。对高强度钢 筋(额定 为 y = 460 n/ mm2 )进行的拉伸试验给出了一个 204000n/mm2的杨 氏模量和一个 532.4n/mm2的 0.2 检验力。以混凝土和加固物的名义屈服强度的 压缩强度为基础的通用材料性能的负载绕度反应包含了有限元模型结果与实验结 果,如图 10。 0 20 40 60 80 0102030405060 deflection at midspan (mm) applied load (kn) beam 1beam 2 fe modelfe generic m 图图 1010:针对材料性能的负载挠度反应的:针对材料性能的负载挠度反应的 3.03.0 米横梁灵敏度米横梁灵敏度 有限元模型与通用材料性能被认为低估了钢筋混凝土梁的力量。相比测试方 案中达到的 66kn,预测的极限负荷大约是 55.8kn。极限负荷的不同是大约等于 假定与测试的钢筋的屈服强度之间的比例。 从两种有限元模型的结果中都可以发现它们对混凝土的杨氏模量和固体物的 屈服力量是相当敏感的。对于 3.0 米横梁和后张法预应力横梁,杨式模量衍生测 试赞同休斯的预言,因而固体物和后张力电缆的屈服力量成为精确识别横梁的极 限负载的关键参数。被认可的后章法预应力横梁的极限负载也是依赖于后张力的 实际水平的。 6 结论结论 3.0 米普通钢筋混凝土横梁和 9.0 米后张法预应力混凝土横梁的有限元模型 对在 ansya v5.5 中,以精确捕获到这些失败体系的非线性扰曲反应的专用混凝 土要素的使用作出了贡献。 专用元件采用了抹黑裂纹模型,并认可了以一个分布式或离散的方式模拟钢 筋的混凝土裂纹模拟。结果发现,在控制网格密度和准确定位内部钢筋方面,最 佳模型战略是以一个离散的方式模拟原始钢筋。因此,普通钢筋混凝土的所有内 部加固被分别模拟,而后张法预应力横梁的后张钢筋束应参照其他外部加固被分 别模拟的方式来模拟。 在使用有限元模型预测现有横梁的力量方面,适当的物质性能的分配是至关 重要的。我们发现一个已知的混凝土抗压强度是可以从提取的内核中测量出来的。 杨氏模量和混凝土抗张强度的现有经验法则被充分列入该数值模型。与钢筋相关 的实际屈服强调度很可能大于名义设计强度和将因此被低估的横梁的极限荷载。 有关后张法预应力梁的情况在施工后将会发生的后张强迫力下更加复杂化,也带 来不可避免的损失。在后张预应力的评估模型中,这些损失和建筑物的有限期应 该被计算出来。 在结论中,专用抹黑裂缝模型是一个合适的数值模式,可获得失败的钢筋混 凝土系统的弯曲模式。此外,对于给定的负载,除了它的极限强度,他们被要求 精确的预测出钢筋混凝土系统的挠度的时候,它就特别能引起设计师的兴趣。 参考文献参考文献 1.ansys, ansys manual set, 1998, ansys inc., southpoint, 275 technology drive, canonsburg, pa 15317, usa. 2.william, k.j. and warnke, e.d. “constitutive model for the triaxial behaviour of concrete”, proceedings of the international association for bridge and structural engineering, 1975, 19, p.174, ismes, bergamo, italy 3.bs 1881, testing concrete, part 117, method for the determination of tensile splitting strength , 1983, british standards institution, london. 4.bs 1881, testing concrete, part 121, method for the determination of compressive strength of concrete cores , 1983, british standards institution, london. 5.bs 1881, testing concrete, part 121, method for the determination of static modulus of elasticity in compression , 1983, british standards institution, london. 6.fanning, p. and znidaric, a., solid modelling of post-tensioned bridge beams using finite elements, to be published at fib 99 symposium: structural concrete the bridge between people, 1999, prague, 12-15 october, czech concrete and masonry society. 7.o brien, e.j. and dixon, a.s., reinforced and prestressed concrete design: the complete process, 1995, 1st edition, longman scientific and technical (uk). 8.hughes, b.p., limit state theory for reinforced concrete design, 1976, 2nd edition, pitman publishing ltd (london). 9.bs 8110, structural use of concrete, part 1, 1985, british standards institution, london. 翻译原文翻译原文: nonlinear models of reinforced and post-tensioned concrete beams p. fanning lecturer, department of civil engineering, university college dublin earlsfort terrace, dublin 2, ireland. email: paul.fanningucd.ie received 16 jul 2001; revised 8 sep 2001; accepted 12 sep 2001. abstract commercial finite element software generally includes dedicated numerical models for the nonlinear response of concrete under loading. these models usually include a smeared crack analogy to account for the relatively poor tensile strength of concrete, a plasticity algorithm to facilitate concrete crushing in compression regions and a method of specifying the amount, the distribution and the orientation of any internal reinforcement. the numerical model adopted by ansys is discussed in this paper. appropriate numerical modelling strategies are recommended and comparisons with experimental load-deflection responses are discussed for ordinary reinforced concrete beams and post- tensioned concrete t-beams. keywords concrete; post-tensioning; finite element modelling. 1. introduction: the ansys reinforced concrete model the implementation of nonlinear material laws in finite element analysis codes is generally tackled by the software development industry in one of two ways. in the first instance the material behaviour is programmed independently of the elements to which it may be specified. using this approach the choice of element for a particular physical system is not limited and best practice modelling techniques can be used in identifying an appropriate element type to which any, of a range, of nonlinear material properties are assigned. this is the most versatile approach and does not limit the analyst to specific element types in configuring the problem of interest. notwithstanding this however certain software developers provide specific specialised nonlinear material capabilities only with dedicated element types. ansys 1 provides a dedicated three- dimensional eight noded solid isoparametric element, solid65, to model the nonlinear response of brittle materials based on a constitutive model for the triaxial behaviour of concrete after williams and warnke 2. the element includes a smeared crack analogy for cracking in tension zones and a plasticity algorithm to account for the possibility of concrete crushing in compression zones. each element has eight integration points at which cracking and crushing checks are performed. the element behaves in a linear elastic manner until either of the specified tensile or compressive strengths are exceeded. cracking or crushing of an element is initiated once one of the element principal stresses, at an element integration point, exceeds the tensile or compressive strength of the concrete. cracked or crushed regions, as opposed to discrete cracks, are then formed perpendicular to the relevant principal stress direction with stresses being redistributed locally. the element is thus nonlinear and requires an iterative solver. in the numerical routines the formation of a crack is achieved by the modification of the stress-strain relationships of the element to introduce a plane of weakness in the requisite principal stress direction. the amount of shear transfer across a crack can be varied between full shear transfer and no shear transfer at a cracked section. the crushing algorithm is akin to a plasticity law in that the once a section has crushed any further application of load in that direction develops increasing strains at constant stress. subsequent to the formation of an initial crack, stresses tangential to the crack face may cause a second, or third, crack to develop at an integration point. the internal reinforcement may be modelled as an additional smeared stiffness distributed through an element in a specified orientation or alternatively by using discrete strut or beam elements connected to the solid elements. the beam elements would allow the internal reinforcement to develop shear stresses but as these elements, in ansys, are linear no plastic deformation of the reinforcement is possible. the smeared stiffness and link modelling options allow the elastic-plastic response of the reinforcement to be included in the simulation at the expense of the shear stiffness of the reinforcing bars. 2. test case beams results of ultimate load tests on ordinarily reinforced and post-tensioned concrete beams were used to assess the suitability of the reinforced concrete model implemented in ansys in predicting the ultimate response of reinforced concrete beams. 3.0m long ordinarily reinforced concrete beams a cross section through the 3.0m long beams, figure 1, illustrates the internal reinforcement. three 12mm diameter steel bars were included in the tension zone with two 12mm steel bars as compression steel. ten shear links, formed from 6mm mild steel bars, were provided at 125mm centres for shear reinforcement in the shear spans. two beams were tested each of which were simply supported with a clear span of 2.8m and loaded symmetrically and monotonically, under displacement control, in four point bending, with point loads 0.3m either side of the mid-span location, to failure. cylinder splitting 3 and crushing tests 4 on cored samples of the beams, in accordance with the british standards, were undertaken to identify the uni-axial tensile and compressive strengths of the concrete, (ft = 5.1n/mm2 and fc = 69.0n/mm2 respectively), and the youngs modulus of the concrete 5, (39,200 n/mm2), for inclusion in the numerical models. tensile tests on samples of the reinforcing bars and shear links were also undertaken such that their nonlinear plastic response could be accurately simulated in the numerical models. 9.0m long third scale prestressed beams 6 a cross section and elevation of third scale models of 30m long prestressed concrete beams tested at the slovenian national building and civil engineering institute, ljubljana, slovenia are shown in figure 2. the flange of the t-beam is 1.1m wide and 0.08m deep while the web is effectively an i-beam with a flange width of 0.29m and an overall depth of 0.6m. in addition to ordinary reinforcing bars, three grouted 0.6“ (15.2 mm) tendons, each composed of 75.08 mm diameter wires, were used to post-tension each beam. tensile tests on the reinforcing bars and tendons and strength and stiffness tests on the concrete identified the relevant material properties, linear and nonlinear, for the numerical model. the beam was loaded to failure while deflection and strain data, on the external concrete surfaces and on the individual cables, were monitored. the load arrangement is illustrated in figure 3 and in all cases the uniformly distributed loading was applied initially with the point loads p1 and p2 being applied in subsequent increments until the ultimate load of the beam was reached. figure 1: cross section details for the 3.0m beams 998 cm 30302929 60 8 110 29 figure 2: elevation and cross-section of the model post-tensioned beam 334,5 50 43 163 50 154,5 43 14,5 46 15 56 15 266 p2 = 43%p p1 = 57%p q = 3,3 kn/m 30 30 50 14,5 71 499 499 14 14 q = 3,3 kn/m figure 3: loading arrangement 3. finite element modeling strategies the requirement to include the nonlinear response of reinforced concrete in capturing the ultimate response of both the post-tensioned and ordinarily reinforced beams demands the use of the dedicated solid65 element in ansys. the existence of symmetry planes, two for the 3.0m beams and one for the prestressed beams, resulted in only quarter and half models being required respectively. the finite element mesh for the 3.0m beams is plotted in figure 4 with the mesh for the prestressed beams shown in figure 5. the internal reinforcement for the 3.0m beams were modelled using three dimensional spar elements with plasticity, link8, embedded within the solid mesh. this option was favoured over the alternative smeared stiffness capability as it allowed the reinforcement to be precisely located whilst maintaining a relatively coarse mesh for the surrounding concrete medium. the inherent assumption is that there is full displacement compatibility between the reinforcement and the concrete and that no bond slippage occurs. the model was loaded, through applied displacement to facilitate easier convergence, in a manner consistent with the test programme. in formulating the model for the post-tensioned beams the three dimensional spar elements with plasticity, link8, were employed for the post-tensioning cables (primary reinforcement), with the remaining internal reinforcing bars modelled using the alternative distributed smeared stiffness approach. the post-tensioning was modelled via an initial strain in the tendon elements, corresponding to tendon tensile forces, in a preliminary load stage. subsequently the uniformly distributed loading was specified in a second load stage prior to the model being loaded to failure in a third solution stage in a manner consistent with the test data. figure 4: 3.0m beams finite element mesh (selected concrete elements removed to illustrate internal reinforcement) figure 5: post-tensioned beams finite element mesh 4. comparison of experimental and numerical results the load deflection responses for the 3.0m beams, from the test programme, are plotted with the finite element results in figure 6. the numerical model predicts an ultimate load of 66.1kn and captures well the nonlinear load deflection response of the beams up to failure. the ultimate loads reached in the tests were 66.18kn and 66.7kn respectively. it is clear form the numerical model that the response of the model is linear until the first crack has formed at approximately 17kn. although the measured response of the beams were, initially, slightly less stiff the first visible crack appeared at approximately 17kn also. beyond this point the almost linear response of the finite element model is consistent with the test data. classical reinforced concrete theory 7, predicted tensile reinforcement yielding to commence at approximately 59kn which is consistent with the change in slope of the load deflection response for bot

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论