高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第1页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第2页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第3页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第4页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲讲 三角恒等变换变换 与解三角形 高考定位 高考对本内容的考查主要有:(1)两角和(差)的正 弦、余弦及正切是C级要求,二倍角的正弦、余弦及正切是 B级要求,应用时要适当选择公式,灵活应用.试题类型可能 是填空题,同时在解答题中也是必考题,经常与向量综合考 查,构成中档题;(2)正弦定理和余弦定理以及解三角形问 题是B级要求,主要考查:边和角的计算;三角形形状 的判断;面积的计算;有关的范围问题.由于此内容应 用性较强,与实际问题结合起来进行命题将是今后高考的一 个关注点,不可轻视. 真 题 感 悟 考 点 整 合 1.三角函数公式 2.正、余弦定理、三角形面积公式 探究提高 1.解决三角函数的化简求值问题的关键是把“所 求角”用“已知角”表示 (1)当已知角有两个时,“所求角”一般表示为“两个已知 角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和 或差的关系,然后应用诱导公式把“所求角”变成“已知 角”. 2.求角问题要注意角的范围,要根据已知条件将所求角的 范围尽量缩小,避免产生增解. 探究提高 1.解三角形时,如果式子中含有角的余弦或边 的二次式,要考虑用余弦定理;如果式子中含有角的正弦 或边的一次式时,则考虑用正弦定理;以上特征都不明 显时,则考虑两个定理都有可能用到. 2.关于解三角形问题,一般要用到三角形的内角和定理, 正弦、余弦定理及有关三角形的性质,常见的三角恒等变 换方法和原则都适用,同时要注意“三统一”,即“统 一角、统一函数、统一结构”. 探究提高 求解三角形中的最值问题常用如下方法: (1)将要求的量转化为某一角的三角函数,借助于三角 函数的值域求最值.(2)将要求的量转化为边的形式, 借助于基本不等式求最值. 微题型3 求解三角形中的实际问题 【例23】 (2016无锡高三期末)在一个直角边长为 10 m的等腰 直角三角形ABC的草地上,铺设一个也是等腰直角三角形PQR 的花地,要求P,Q,R三点分别在ABC的三条边上,且要使 PQR的面积最小,现有两种设计方案: 方案一:直角顶点Q在斜边AB上,R,P分别在直角边AC, BC上; 方案二:直角顶点Q在直角边BC上,R,P分别在直角边AC ,斜边AB上. 请问应选 用哪一种方案?并说明理由. 方案一 方案二 解 应选方案二,理由如下: 方案一:过点Q作QMAC于点M,作QNBC于 点N, 因为PQR为等腰直角三角形,且QPQR, MQRNQP,RMQPNQ90, 探究提高 应用解三角形知识解决实际问题需要下列四步: (1)分析题意,准确理解题意,分清已知与所求,尤其要理 解题中的有关名词、术语,如坡度、仰角、俯角、视角、 方位角等;(2)根据题意画出示意图,并将已知条件在图形 中标出;(3)将所求问题归结 到一个或几个三角形中,通过 合理运用正、余弦定理等有关知识正确求解;(4)检验解出 的结果是否具有实际意义,对结果进行取舍,得出正确答 案. (1)证明 由正弦定理得sin Bsin C2sin Acos B, 故2sin Acos Bsin Bsin(AB) sin Bsin Acos Bcos Asin B, 于是sin Bsin(AB).又A,B(0,), 故0AB,所以B(AB)或BAB, 因此A(舍去)或A2B,所以A2B. 1.对于三角函数的求值,需关注: (1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练 准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常 规技巧的运用; (3)对于条件求值问题 ,要认真寻找条件和结论的关系, 寻找解题的突破口,对于很难入手的问题,可利用分析法. 2.三角形中判断边、角关系的具体方法: (1)通过正弦定理实施边角转换;(2)通过余弦定理实 施边角转换;(3)通过三角变换找出角之间的关系; (4)通过三角函数值符号的判断以及正、余弦函数的有 界性进行讨论;(5)若涉及两个(或两个以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论