[工学]总线基础知识.doc_第1页
[工学]总线基础知识.doc_第2页
[工学]总线基础知识.doc_第3页
[工学]总线基础知识.doc_第4页
[工学]总线基础知识.doc_第5页
已阅读5页,还剩44页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计算机总线技术基础知识之内部总线任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线将会错综复杂,甚至难以实现。为了简化硬件电路设计、简化系统结构,常用一组线路,配置以适当的接口电路,与各部件和外围设备连接,这组共用的连接线路被称为总线。采用总线结构便于部件和设备的扩充,尤其制定了统一的总线标准则容易使不同设备间实现互连。 微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。 另外,从广义上说,计算机通信方式可以分为并行通信和串行通信,相应的通信总线被称为并行总线和串行总线。并行通信速度快、实时性好,但由于占用的口线多,不适于小型化产品;而串行通信速率虽低,但在数据通信吞吐量不是很大的微处理电路中则显得更加简易、方便、灵活。串行通信一般可分为异步模式和同步模式。 随着微电子技术和计算机技术的发展,总线技术也在不断地发展和完善,而使计算机总线技术种类繁多,各具特色。下面仅对微机各类总线中目前比较流行的总线技术分别加以介绍。 一、内部总线1I2C总线I2C(Inter-IC)总线10多年前由Philips公司推出,是近年来在微电子通信控制领域广泛采用的一种新型总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。2SPI总线串行外围设备接口SPI(serialperipheralinterface)总线技术是Motorola公司推出的一种同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。3SCI总线串行通信接口SCI(serialcommunicationinterface)也是由Motorola公司推出的。它是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。 二、系统总线1ISA总线ISA(industrialstandardarchitecture)总线标准是IBM公司1984年为推出PC/AT机而建立的系统总线标准,所以也叫AT总线。它是对XT总线的扩展,以适应8/16位数据总线要求。它在80286至80486时代应用非常广泛,以至于现在奔腾机中还保留有ISA总线插槽。ISA总线有98只引脚。2EISA总线EISA总线是1988年由Compaq等9家公司联合推出的总线标准。它是在ISA总线的基础上使用双层插座,在原来ISA总线的98条信号线上又增加了98条信号线,也就是在两条ISA信号线之间添加一条EISA信号线。在实用中,EISA总线完全兼容ISA总线信号。3VESA总线VESA(videoelectronicsstandardassociation)总线是1992年由60家附件卡制造商联合推出的一种局部总线,简称为VL(VESAlocalbus)总线。它的推出为微机系统总线体系结构的革新奠定了基础。该总线系统考虑到CPU与主存和Cache的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。它定义了32位数据线,且可通过扩展槽扩展到64位,使用33MHz时钟频率,最大传输率达132MB/s,可与CPU同步工作。是一种高速、高效的局部总线,可支持386SX、386DX、486SX、486DX及奔腾微处理器。4PCI总线PCI(peripheralcomponentinterconnect)总线是当前最流行的总线之一,它是由Intel公司推出的一种局部总线。它定义了32位数据总线,且可扩展为64位。PCI总线主板插槽的体积比原ISA总线插槽还小,其功能比VESA、ISA有极大的改善,支持突发读写操作,最大传输速率可达132MB/s,可同时支持多组外围设备。PCI局部总线不能兼容现有的ISA、EISA、MCA(microchannelarchitecture)总线,但它不受制于处理器,是基于奔腾等新一代微处理器而发展的总线。5CompactPCI以上所列举的几种系统总线一般都用于商用PC机中,在计算机系统总线中,还有另一大类为适应工业现场环境而设计的系统总线,比如STD总线、VME总线、PC/104总线等。这里仅介绍当前工业计算机的热门总线之一CompactPCI。CompactPCI的意思是“坚实的PCI”,是当今第一个采用无源总线底板结构的PCI系统,是PCI总线的电气和软件标准加欧式卡的工业组装标准,是当今最新的一种工业计算机标准。CompactPCI是在原来PCI总线基础上改造而来,它利用PCI的优点,提供满足工业环境应用要求的高性能核心系统,同时还考虑充分利用传统的总线产品,如ISA、STD、VME或PC/104来扩充系统的I/O和其他功能。 三、外部总线1RS-232-C总线RS-232-C是美国电子工业协会EIA(ElectronicIndustryAssociation)制定的一种串行物理接口标准。RS是英文“推荐标准”的缩写,232为标识号,C表示修改次数。RS-232-C总线标准设有25条信号线,包括一个主通道和一个辅助通道,在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、4800、9600、19200波特。RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。2RS-485总线在要求通信距离为几十米到上千米时,广泛采用RS-485串行总线标准。RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。加上总线收发器具有高灵敏度,能检测低至200mV的电压,故传输信号能在千米以外得到恢复。RS-485采用半双工工作方式,任何时候只能有一点处于发送状态,因此,发送电路须由使能信号加以控制。RS-485用于多点互连时非常方便,可以省掉许多信号线。应用RS-485可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。3IEEE-488总线上述两种外部总线是串行总线,而IEEE-488总线是并行总线接口标准。IEEE-488总线用来连接系统,如微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488总线装配起来。它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备直接并联于总线上而不需中介单元,但总线上最多可连接15台设备。最大传输距离为20米,信号传输速度一般为500KB/s,最大传输速度为1MB/s。4USB总线通用串行总线USB(universalserialbus)是由Intel、Compaq、Digital、IBM、Microsoft、NEC、NorthernTelecom等7家世界著名的计算机和通信公司共同推出的一种新型接口标准。它基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。它可以为外设提供电源,而不像普通的使用串、并口的设备需要单独的供电系统。另外,快速是USB技术的突出特点之一,USB的最高传输率可达12Mbps比串口快100倍,比并口快近10倍,而且USB还能支持多媒体。USB 20的数据传输率比USB 11快40倍,达480Mbps(60MB/s),与目前的USB 11设备兼容,预计2001年年底OEM厂商开始采购英特尔集成有USB 20控制器的芯片、2002年中期伴随ICH4正式推出USB 20产品。5IEEE 1394总线 IEEE 1394是一种串行接口标准,这种接口标准允许把电脑、电脑外部设备、各种家电非常简单地连接在一起。从IEEE1394可以连接多种不同外设的功能特点来看,也可以称为总线,即一种连接外部设备的机外总线。IEEE 1394的原型是运行在AppleMac电脑上的FireWire(火线),由IEEE采用并且重新进行了规范。它定义了数据的传输协定及连接系统,可用较低的成本达到较高的性能,以增强电脑与外设如硬盘、打印机、扫描仪,与消费性电子产品如数码相机、DVD播放机、视频电话等的连接能力。 由于要求相应的外部设备也具有IEEE1394接口功能才能连接到1394总线上,所以直到1995年第3季度Sony推出的数码摄像机加上了IEEE1394接口后,1394才真正引起广泛的注意。采用1394接口的数码摄像机,可以毫无延迟地编辑处理影像、声音数据,性能得到增强。数码相机、DVD播放机和一般消费性家电产品,如VCR、HDTV、音响等也都可以利用IEEE1394接口来互相连接。电脑的外部设备,例如硬盘、光驱、打印机、扫描仪等,也可利用IEEE1394来传输数据。机外总线将改变当前电脑本身拥有众多附加插卡、连接线的现状,它把各种外设和各种家用电器连接起来。电脑也成为一种普通的家电。 当电脑家电化之后,未来的电脑将如同现在的电视机一样,消费者可能只需拿起遥控器便可快速完成上Internet、玩游戏、控制视听影音器材甚至控制家里的电灯、电话等电器,真正实现居室智能化。USB 20和IEEE 1394有什么区别呢?它们最大的区别是接口不同、传输速率不同和可连接设备数量不同:USB 20采用USB接口、480Mbps、可连接127台设备,而IEEE 1394规格为400Mbps、可连接63台设备,不过,IEEE 1394设备间可直接通信,不需要PC存在。PC总线与ISA总线 在计算机系统中,各个功能部件都是通过总线交换数据,总线的速度对系统性能有着极大的影响。而也正因为如此,总线被誉为是计算机系统的神经中枢。但相比CPU、显卡、内存、硬盘等功能部件,总线技术的提升步伐要缓慢得多。在PC发展的二十余年历史中,总线只进行三次更新换代,但它的每次变革都令计算机的面貌焕然一新。在下面的文字中,我们将向大家介绍计算机系统总线的详细发展历程,包括早期的PC总线和ISA总线、PCI/AGP总线、PCI-X总线以及目前主流的PCI Express、HyperTransport高速串行总线。 PC总线与ISA总线 PC总线是最古老的总线之一,虽然在它之前还有诸如MCA、VESA在内的多种总线规格,但它却是第一种被认可为广泛标准的总线技术。PC总线最早出现在IBM公司1981年推出的PC/XT电脑中,它基于8位结构的8088处理器,也被称为PC/XT总线。 PC总线沿用了三年多时间,直到1984年,IBM推出基于16位英特尔80286处理器的PC/AT电脑,系统总线才被16位的PC/AT总线所代替。而这个时候,PC产业已初具规模,加之IBM允许第三方厂商开发兼容产品,PC/AT总线规范也被逐渐标准化,并衍生出著名的ISA总线(Industry Standard Architecture,工业标准架构)。 与PC/AT总线不同,ISA总线采用8位和16位模式,它的最大数据传输率为8MBps和16MBps今天来看这样的性能低得不可思议,但在当时8MBps的速率绰绰有余,完全可满足多个CPU共享系统资源的需要。既然是标准化的总线技术,ISA就基本不存在什么兼容性问题,后来的兼容PC也无一例外都采用ISA技术作为系统总线。ISA总线一直贯穿286和386SX时代,在当时,16位X86系统对总线性能并没有太高的要求,ISA也没有遭遇任何麻烦。但在32位386DX处理器出现之后,16位宽度的ISA总线就遇到问题,总线数据传输慢使得处理器性能也受到严重的制约。有鉴于此,康柏、惠普、AST、爱普生等九家厂商协同将ISA总线扩展到32位宽度,EISA(Extended Industry Standard Architecture,扩展工业标准架构)总线由此诞生这是发生在1988年的事情。EISA总线的工作频率仍然保持在8MHz水平,但受益于32位宽度,它的总线带宽提升到32MBps。另外,EISA可以完全兼容之前的8/16位ISA总线,用户已有扩展设备可继续使用,一定程度受到用户的欢迎。然而,EISA并没有重复ISA的辉煌,它的成本过高,且速度潜力有限;更要命的是,在还没有来得及成为正式工业标准的时候,更先进的PCI总线就开始出现,EISA也就成为附庸。不过,EISA总线并没有因此快速消失,它在计算机系统中与PCI总线共存了相当漫长的时光,直到2000年后EISA才正式彻底退出而此时距EISA标准的提出已经过去了12年。庞大的PCI总线家族 PCI总线诞生于1992年。英特尔推出486处理器,这个时候,EISA总线成为瓶颈,因为CPU的速度已经明显高于总线速度,但受到EISA的限制,硬盘、显卡和其它外围设备都只能慢速发送和接收数据,整机性能受到严重影响。为了解决这个问题,英特尔公司提出32位PCI总线的概念,并迅速获得认可成为新的工业标准。 第一个版本的PCI总线工作于33MHz频率下,传输带宽达到133MBps,比ISA总线和EISA总线有了巨大的改进,很好满足当时计算机系统的发展需要。而且PCI采用了独特的中间缓冲器设计,显卡、声卡、网卡、硬盘控制器等高速外围设备都可以直接挂在PCI总线中,再与CPU实现通讯,这种做法不仅满足了当时配件对系统总线的性能要求,也提供了相当的灵活性,其设计思想一直延续至今。在PCI发布一年之后,英特尔公司紧接着提出64位的PCI总线,它的传输性能达到266MBps,但主要用于企业服务器和工作站领域;由于这些领域对总线性能要求较高,64位/33MHz规格的PCI很快又不够用了,英特尔遂将它的工作频率提升到66MHz。而随着X86服务器市场的不断扩大,64位/66MHz规格的PCI总线理所当然成为该领域的标准,针对服务器/工作站平台设计的SCSI卡、RAID控制卡、千兆网卡等设备无一例外都采用64位PCI接口,乃至到今天,这些设备还被广泛使用。 不过,PC领域的32位总线一直都没有得到升级,工作频率也停留于33MHz,随着时间的推移,PCI总线又遇到新的瓶颈。1996年,3D显卡出现,揭开3D时代的序幕。由于3D显卡需要与CPU进行频繁的数据交换,而图形数据又往往较为庞大,PCI总线显得力不从心。看到这种情况,英特尔便在PCI基础上专门研发出一种专门针对显卡的总线标准,它就是大名鼎鼎的AGP总线(加速图形接口,Accelerated Graphics Port)。1996年7月,AGP 1.0标准问世,它的工作频率达到66MHz,具有1X和2X两种模式,数据传输带宽分别达到了266MBps和533MBps。AGP 1.0的出现,在一段时间内基本满足显卡与系统交换数据的需要,为早期的3D显卡广为使用,当然最流行的是AGP 2X模式,只能够支持1X模式的显卡非常罕见。 AGP 1.0大约只流行了两年时间,原因在于显卡技术发展日新月异,显卡单位时间要处理的数据呈几何级数成倍增长,AGP 2X提供的533MBps带宽很快又无法满足需要。1998年5月,英特尔公司发布AGP 2.0版规范,它的工作频率仍然停留在66MHz,但工作电压降低到1.5V,且通过增加的4X模式,将数据传输带宽提升到1.06GBps,这近乎是个飞跃性的进步。很自然,AGP 4X获得非常广泛的应用,这一点相信众人皆知。而与AGP 2.0同时推出的,还有一种针对图形工作站的AGP Pro接口,这种接口具有更强的供电能力,可驱动高功耗的专业显卡。很自然,AGP Pro成为专业显卡的接口标准,而一些高端PC主板也采用该接口,毕竟它可以完全兼容标准的AGP显卡,在应用上并无障碍。 AGP 2.0同样活跃了两年时间。2000年8月,英特尔公司推出AGP 3.0规范,它的工作电压进一步降低到0.8V,不过意义最重大的还是所增加的8X模式,这样,它便可以提供2.1GBps的总线带宽。可与前两代技术一样,AGP 8X标准没有辉煌太长时间,PCI Express总线的出现宣告PCI和AGP体系将被终结。但由于过渡不可能短时间完成,AGP 8X至今在市场上还非常活跃,尤其是在中低端领域还占据着主流地位。而在另一方面,PCI总线也早已无法满足PC扩展的需要,发展新技术势在必行。用于PC环境的32位/33MHz规格PCI总线只能提供133MBps带宽,而且要求所有的扩展设备共同分享,这在九十年代初也许没有什么问题,但时过境迁,PC系统发生了巨大的变化,各个设备的接口速度暴涨,如硬盘接口速率超过100MBps,加上千兆网卡、磁盘阵列卡等高性能设备,133MBps共享带宽早已成为严重的瓶颈。而服务器领域虽然使用64位/66MHz的PCI总线,但该领域的千兆网卡、SCSI硬盘或SCSI RAID系统更是带宽占用大户,PCI总线根本无法满足要求。在这种背景下,开发彻底代替PCI的新一代总线势在必行,对此服务器厂商与PC厂商持有不同的看法,这也导致PCI-X和PCI Express两大标准的同时出现前者专门针对服务器/工作站领域,采用平滑升级的方式获得高性能,可以称为PCI技术的改良;而后者则是一种革命性的高速串行总线技术,主要用于PC系统中,这也是我们接下来两部分分别要讲述的内容。PCI-X锁定服务器领域 PCI-X总线由康柏、惠普和IBM等三家服务器厂商于九十年代末共同发起,后来提交给PCI SIG组织修订。这项工作耗费了不短的时间,最终在2000年正式发布PCI-X 1.0版标准,PCI-X宣告诞生。 PCI总线至今仍然是PC扩展设备的首选接口在技术上,PCI-X并没有脱离PC体系,它仍使用64位并行总线和共享架构,但将工作频率提升到133MHz,由此获得高达1.06GBps的总带宽。如果四组设备并行工作,每组设备可用带宽为266MBps;如果只有两组设备并行,那么每组设备就可分得533MBps;而在连接一组设备的情况下,该设备便可以独自使用到全部的1.06GBps带宽。相对于64位PCI总线,PCI-X的提升相当明显,在它的帮助下,服务器内部总线资源紧张的难题得到一定的缓解。不过,PCI-X带来的变化不仅如此,它在总线的传输协议方面有许多重要的改良,例如PCI-X启用“寄存器到寄存器”的新协议发送方发出的数据信号会被预先送入一个专门的寄存器内;寄存器可将信号保持一个时钟周期,而接收方只要在这个时钟周期内作出响应即可。而原来的PCI总线就没有这个缓冲过程,如果接收方无暇处理发送方的信号,那么该信号就会被自动抛弃,容易导致信号遗失。PCI-X的另一个重要优点在于,它可以完全兼容之前的64位PCI扩展设备,用户已有投资可以获得充分保障。平滑过渡的方式让PCI-X在服务器/工作站领域大获成功,并很快取代64位PCI成为新的标准。PCI-X总线已成为服务器主板的标准配备 PCI-X 1.0没有辉煌太长时间,基于PCI基础改良的性质让它不可能彻底解决带宽不足的问题。2002年7月,PCI-SIG推出更快的PCI-X 2.0规范,它包含较低速的PCI-X 266及高速的PCI-X 533两套标准,分别针对不同的应用。同样,PCI-X 2.0并没有对总线架构做什么大改动,而只是将工作频率分别提升到266MHz和533MHz,以此获得更高的传输效能。PCI-X 266标准可提供2.1GBps共享带宽,PCI-X 533标准则更是达到4.2GBps的高水平。这两者最多都可以支持8组设备,扩展力相当强大;如果系统只安装4组设备,那么最高级的PCI-X 533标准允许每个设备获得超过1GBps的总线带宽,这完全可满足多路千兆以太网、光纤通道、SAS RAID系统的需求。此外,PCI-X 2.0也保持良好的兼容性,它的接口与PCI-X 1.0完全相同,可无缝兼容之前所有的PCI-X 1.0设备和PCI扩展设备。很自然,PCI-X 2.0成功进入服务器市场并大获成功,直到现在它仍然在服务器市场占据主流地位。 受到PCI-X 2.0成功的鼓舞,PCI-SIG组织在2002年11月宣布将开发PCI-X 3.0标准、也就是PCI-X 1066。据悉,该标准将工作在1066MHz的高频上,共享带宽达到8.4GBps、每个设备至少都拥有1.06GBps带宽。但十分可惜,这项计划后来并没有下文,原因很可能在于遭遇来自PCI Express阵营的冲击。 注:PCI-SIG(PCI Special Interest Group,PCI特别兴趣组)于1992年成立,为管理 PCI规范的行业组织,拥有900多个企业成员,核心成员包括IBM、英特尔、AMD、惠普、微软、Phoenix、ServerWorks和德州仪器(Texas Instruments)等八家企业。PCI Express总线取代PCI 在服务器领域遭遇总线速度困扰的时候,PC系统也面临相同的问题,而业界也认识到诞生多年的PCI总线是时候退出应用舞台了。在2001年的春季IDF论坛上,英特尔公司提出3GIO(Third Generation I/O Architecture,第三代I/O体系)总线的概念,它以串行、高频率运作的方式获得高性能,而3GIO的体系设计也十分富有前瞻性,它将被设计为满足未来十年PC系统的性能需要。3GIO计划获得广泛响应,后来英特尔将它提交给PCI-SIG组织,于2002年4月更名为PCI Express并以标准的形式正式推出。它的效能十分惊人,仅仅是X16模式的显卡接口就能够获得惊人的8GBps带宽。更重要的是,PCI Express改良了基础架构,彻底抛离落后的共享结构,一个新的时代开始了。在工作原理上,PCI Express与并行体系的PCI没有任何相似之处,它采用串行方式传输数据,而依靠高频率来获得高性能,因此PCI Express也一度被人称为“串行PCI”。由于串行传输不存在信号干扰,总线频率提升不受阻碍,PCI Express很顺利就达到2.5GHz的超高工作频率。其次,PCI Express采用全双工运作模式,最基本的PCI Express拥有4根传输线路,其中2线用于数据发送,2线用于数据接收,也就是发送数据和接收数据可以同时进行。相比之下,PCI总线和PCI-X总线在一个时钟周期内只能作单向数据传输,效率只有PCI Express的一半;加之PCI Express使用8b/10b编码的内嵌时钟技术,时钟信息被直接写入数据流中,这比PCI总线能更有效节省传输通道,提高传输效率。第三,PCI Express没有沿用传统的共享式结构,它采用点对点工作模式(Peer to Peer,也被简称为P2P),每个PCI Express设备都有自己的专用连接,这样就无需向整条总线申请带宽,避免多个设备争抢带宽的糟糕情形发生,而此种情况在共享架构的PCI系统中司空见惯。 由于工作频率高达2.5GHz,最基本的PCI Express总线可提供的单向带宽便达到250MBps(2.5Gbps1 B/8bit8b/10b=250MBps),再考虑全双工运作,该总线的总带宽达到500MBps这仅仅是最基本的PCI Express 1模式。如果使用两个通道捆绑的2模式,PCI Express便可提供1GBps的有效数据带宽。依此类推,PCI Express 4、8和16模式的有效数据传输速率分别达到2GBps、4GBps和8GBps。这与PCI总线可怜的共享式133MBps速率形成极其鲜明的对比,更何况这些都还是每个PCI Express可独自占用的带宽。 PCI Express 1.0标准推出之后,实用化开发也随之启动。2004年6月,英特尔推出完全基于PCI Express设计的i915/925x系列芯片组,而nVIDIA和ATI两家显卡厂商也都在第一时间推出采用PCI Express 16接口的显卡,PCI Express时代正式来临。不久以后,nVIDIA、VIA、SiS、ATI、Uli等芯片组厂商也都纷纷推出新一代PCI Express芯片组,移动平台也进入PCI Express时代。PCI Express取代PCI的运动开展得如火如荼,这也是我们今天看到的情况。HyperTransport总线在系统总线家族中,HyperTransport应该是一个另类,原因是它只是AMD自家提出的企业标准,设计目的是用于高速芯片间的内部联接,但随着AMD64平台的成功,HyperTransport总线的影响力也随之扩大,并成为连接AMD64处理器、北桥芯片和南桥芯片的系统中枢在这样的架构中,PCI Express总线反而不再承担中坚角色,只是承担设备扩展的单一职能,HyperTransport便理所当然成为AMD64平台的系统总线。尽管是2004年才开始得到广泛应用,但HyperTransport的历史却极为悠久。早在1999年,AMD就着手进行设计,当时它被称为“LDT(Lightning Data Transport)”,意思是传输数据像闪电一样快速。2000年5月,LDT 1.0版发布,并被更名为HyperTransport。诚如前面所言,AMD开发HyperTransport的主要意图是为当时还处于设计阶段的K8处理器服务,比如两枚K8处理器构建SMP系统、K8与芯片组、芯片组的南桥与北桥等芯片间连接都需要高速总线,HyperTransport针对这些特定的场合;再者,它也可以作为路由器芯片与交换机芯片、高性能服务器内部的互联总线,具有相当高的灵活性和可扩充性,这一点也为后来的实际应用所证实。 在基本工作原理上,HyperTransport与PCI Express如出一辙,都是通过串行传输、高频率运作获得超高性能不过正确的说法应该颠倒过来,因为HyperTransport技术早于PCI Express,后者其实是参照HyperTransport而设计。基本的HyperTransport总线为两条点对点的全双工数据传输线路(一条为输入、一条为输出),它的物理频率只有400MHz,AMD引入了DDR双向触发技术,因此其数据传输频率相当于800MHz;如果同时使用8对这样的串行传输线路(也就是8位),HyperTransport的双向数据传输率可达到1.6GBps;而如果采用32位设计,HyperTransport便能够提供6.4GBps的超高带宽。在2000年,如此高速的总线绝对令外界感到疯狂,而事实最终证明AMD的远见。 除了速度快之外,HyperTransport还有一个独有的优势,它可以在串行传输模式下模拟并行数据的传输效果。在当时,PC都是采用32位X86架构,系统内部数据都是以32位作为一个基本单位进行传输或处理;而改用串行总线后,接收方在接收数据时就得等32位数据全部到齐后才可进行转换和封包,这就给系统带来不必要的负担。HyperTransport总线很好地解决了这个问题,它采用一种特殊的分批方式,可以将32位数据预先分批组装如果采用的是8位总线,那么32位数据会被分成4个批次发送,然后自动合为一体。这样在系统看来,数据都是以32位为单位传送的,它就能够直接调用,而不必像传统串行总线一样需要由系统干涉数据组装工作。 第一个采用HyperTransport总线的产品是nVIDIA在2001年推出的nForce芯片组,nVIDIA选择的是8位总线,南北桥带宽就达到800MBps在当时,同类芯片组的南北桥带宽不过只有区区266MBps,nForce的高指标显得异常前卫。虽然nForce没有获得成功,但高性能的HyperTransport总线给外界留下深刻的印象。2002年,nForce2推出,这次nVIDIA取得了成功,HyperTransport真正进入实用阶段不过,HyperTransport的真正辉煌还是在AMD的Opteron和Athlon 64推出以后。这两款处理器都采用32位、800Mz规格的HyperTransport总线与芯片组连接,总线带宽高达6.4GBps。由于Opteron和Athlon 64都直接整合了内存控制器,HyperTransport总线就只需要承担“显卡与CPU”以及“南桥I/O设备与CPU”之间的数据传输任务,6.4GBps带宽绰绰有余。此外,AMD为K8平台设计的AMD8000芯片组也采用HyperTransport技术,HyperTransport贯穿CPU、北桥和南桥,成为整套架构的中枢神经。不过VIA和SiS都拥有自己的南北桥总线技术,暂时未采用HyperTransport,nVIDIA的nForce3芯片组因采用单芯片设计,HyperTransport总线也与它无缘。 2004年2月,AMD推出HyperTransport 2.0,它的主要变化就是数据传输频率提升到1GHz,32位总线的带宽达到8GBps。AMD将它用于Opteron以及高端型号的Athlon 64 FX、Athlon 64处理器中,该平台的所有芯片组产品都迅速提供支持。带宽提升主要是为满足PCI Express总线的需求,我们知道,显卡的PCI Express 16总线提供高达8GBps的带宽,而之前HyperTransport总线只能提供6.4GBps带宽,两者无法匹配,将HyperTransport提升到2.0标准非常有必要。此时,AMD的64位平台已经具有相当出色的竞争力,无论在服务器市场还是桌面市场,AMD平台都大举流行,而HyperTransport的影响力也日趋强大,在可见的将来,HyperTransport都将保持这样的发展势头。 后记: 从PC总线到ISA、PCI总线,再由PCI进入PCI Express和HyperTransport体系,计算机在这三次大转折中也完成三次飞跃式的提升。与这个过程相对应,我们看到计算机的处理速度、实现的功能和软件平台都在进行同样的进化,显然,没有总线技术的进步作为基础,计算机的快速发展就无从谈起。今天,业界站在一个崭新的起点:PCI Express和HyperTransport开创了一个今天看来近乎完美的总线架构,未来十年的计算机都将奔腾在这样的基础之上。而业界对高速总线的渴求也是无休无止,PCI Express 2.0和HyperTransport 3.0都将提上日程,相信它们将会再次带来令人惊喜的效能提升。第一代系统总线:ISA总线 第二代系统总线:PCI总线 第三代系统总线(3GIO):PCI-Express PCI Express采用了点到点的连接技术,每个设备都有自己专用的连接,不需要向共享总线请求带宽,各个设备之间并发的数据传输互不影响。3GIO技术介绍第三代I/O是一种串行I/O互连规范,允许系统内的部件可以高速连接实现未来应用所需的高带宽,可以加快网卡和图形系统的数据传输速度。PCI使用32或64条平行线传输数据,而3GIO使用的线路会更少,但速度会加快而且数据不需要同步。PCI-X利用一根线或者2、4、8、16、32、64根线来达到高互连速度,64组线缆中每根线的传输速率为17 MB/s,所以它的带宽为1.1GB/s,除非用光纤,否则不可能有很大提高。而最初的3GIO开发完成后,每根3GIO线缆的数据传输速率至少是PCI-X技术的12倍,也就是说,单根3GIO线缆的速度可以达到206 MB/s,8线版本的为1.6GB/s,而32线的速度也就是6.4GB/s,大约是PCI-X技术的6倍,改进版本将会更强。相对来说,目前最快的以太网卡速度为120MB/s,最快的图形接口传输标准AGP 4也不过1.06GB/s,因此3GIO技术有足够的带宽满足未来计算机设备的需要。注:3GIO分两条插槽,一是原来的PCI,二是3GIO的新增部分,两部分的传输带宽加起来大于2.5GB/s。3GIO的特性还包括以下几个方面:支持PCI-X协议、可实现PCI-X的QDR(4倍数据传输方式)、针对流式视频/音频的QOS(Quality of Service,服务质量)、支持线缆以及无线形式、改进电源管理、扩展编程模式、完全支持针对PCI标准开发的软件、完全兼容PCI标准硬件、支持PCI周边设备、简化的协议、改进容错能力(ECC以及CRC)。其中和其他总线相比最具有竞争力的就是对PCI协议和设备及基于PCI技术的软件的向下兼容性,使得升级的相关成本大大降低。部分总线标准对比表名称传输速率连接设备usb 2.060mb/秒摄像机、打印机、扫描仪和存储设备serial ata150mb/秒存储设备3gio200mb/秒pc内部设备SATA相较并行ATA可谓优点多多,将成为并行ATA的廉价替代方案。并且从并行ATA完全过渡到SATA也是大势所趋,应该只是时间问题。相关厂商也在大力推广SATA接口,例如Intel的ICH6系列南桥芯片相较于ICH5系列南桥芯片,所支持的SATA接口从2个增加到了4个,而并行ATA接口则从2个减少到了1个;而ICH7系列南桥则进一步支持了4个SATA II接口;下一代的ICH8系列南桥则将支持6个SATA II接口并将完全抛弃并行ATA接口;其它主板芯片组厂商也已经开始支持SATA II接口;目前SATA II接口的硬盘也逐渐成为了主流;其它采用SATA接口的设备例如SATA光驱也已经出现。SATA是Serial ATA的缩写,即串行ATA。这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。 与并行ATA相比,SATA具有比较大的优势。首先,Serial ATA以连续串行的方式传送数据,可以在较少的位宽下使用较高的工作频率来提高数据传输的带宽。Serial ATA一次只会传送1位数据,这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/sec,这比目前最块的并行ATA(即ATA/133)所能达到133MB/sec的最高数据传输率还高,而目前SATA II的数据传输率则已经高达300MB/sec。硬盘接口类型 硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏。从整体的角度上,硬盘接口分为IDE、SATA、SCSI和光纤通道四种,IDE接口硬盘多用于家用产品中,也部分应用于服务器,SCSI接口的硬盘则主要应用于服务器市场,而光纤通道只在高端服务器上,价格昂贵。SATA是种新生的硬盘接口类型,还正出于市场普及阶段,在家用市场中有着广泛的前景。在IDE和SCSI的大类别下,又可以分出多种具体的接口类型,又各自拥有不同的技术规范,具备不同的传输速度,比如ATA100和SATA;Ultra160 SCSI和Ultra320 SCSI都代表着一种具体的硬盘接口,各自的速度差异也较大。IDE IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器。把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为硬盘生产厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容。对用户而言,硬盘安装起来也更为方便。IDE这一接口技术从诞生至今就一直在不断发展,性能也不断的提高,其拥有的价格低廉、兼容性强的特点,为其造就了其它类型硬盘无法替代的地位。 主板IDE接口 IDE代表着硬盘的一种类型,但在实际的应用中,人们也习惯用IDE来称呼最早出现IDE类型硬盘ATA-1,这种类型的接口随着接口技术的发展已经被淘汰了,而其后发展分支出更多类型的硬盘接口,比如ATA、Ultra ATA、DMA、Ultra DMA等接口都属于IDE硬盘。SCSI SCSI的英文全称为“Small Computer System Interface”(小型计算机系统接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的标准接口,而SCSI并不是专门为硬盘设计的接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,但较高的价格使得它很难如IDE硬盘般普及,因此SCSI硬盘主要应用于中、高端服务器和高档工作站中。光纤通道 光纤通道的英文拼写是Fibre Channel,和SCIS接口一样光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬盘系统中。光纤通道硬盘是为提高多硬盘存储系统的速度和灵活性才开发的,它的出现大大提高了多硬盘系统的通信速度。光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大等。 光纤通道是为在像服务器这样的多硬盘系统环境而设计,能满足高端工作站、服务器、海量存储子网络、外设间通过集线器、交换机和点对点连接进行双向、串行数据通讯等系统对高数据传输率的要求。SATA 使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。支持Serial-ATA技术的标志主板上的Serial-ATA接口 串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有非常多的优势。首先,Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在Serial ATA 2.0的数据传输率将达到300MB/s,最终SATA将实现600MB/s的最高数据传输率。1.并行硬盘与串行硬盘的区别酷鱼7200.7 160GB并行硬盘酷鱼7200.7 PLUS 160GB串行硬盘我们找来了酷鱼7200.7 160GB并行版本硬盘和7200.7 PLUS原生串行硬盘作比较,正面看区别不大,只是型号不同。从背面看就有很大区别了,酷鱼7200.7并行版的电路板和串行版的区别很大。而且Serial ATA硬盘的结构采用了方便插拔的设计,而且电源结构与数据线接口更加节省空间。/2/lib/200512/02/20051202023_1.htm第1页: 每个计算机系统,不论台式PC还是笔记本电脑,都会有很多接口。你能正确识别每一个接口么?尽管他们触手可及,却总是出现各种各样的状况。这篇文章包罗万象,为新用户和经历问题的使用者提供帮助。通过大量图片和注释,将告诉你电脑各种接口、插槽、插头的作用。值得安慰的是,大多数接口都不太容易弄错,主要依靠“防呆”设计;如果有特殊情况,文章中会特别注明。(防呆设计:通过一些突出或凹陷的部分,使接口不能或不容易被插反插错,从而保护接口与硬件)我们将接口整体分为两部分:外部接口:电脑的外设联接接口内部接口:计算机系统里的接口第2页:接口列表外部接口:电脑的外设联接接口插头插座名称USBIEEE 1394/ Firewire / i.Link / 火线Cinch / RCA PS/2 键盘鼠标接口VGA显示器视频接口D-subDVI数字视频接口RJ45 (LAN /ISDN) 网线接口RJ11 (Modem / 电话) S-Vi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论