已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数大全三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义城为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。目录公式分类 三角关系 一个特殊公式 坡度公式 锐角三角函数 一般公式 二倍角公式 三倍角公式 三倍角公式 半角公式 万能公式 其他 四倍角公式 五倍角公式 六倍角公式 七倍角公式 八倍角公式 九倍角公式 十倍角公式 N倍角公式 半角公式 两角和公式 三角和公式 和差化积 积化和差 双曲函数诱导公式 万能公式 其它公式内容规律 一些重要的定理 正弦定理 余弦定理展开公式分类 三角关系 一个特殊公式 坡度公式 锐角三角函数 一般公式 二倍角公式 三倍角公式 三倍角公式 半角公式 万能公式 其他 四倍角公式 五倍角公式 六倍角公式 七倍角公式 八倍角公式 九倍角公式 十倍角公式 N倍角公式 半角公式 两角和公式 三角和公式 和差化积 积化和差 双曲函数诱导公式 万能公式 其它公式内容规律 一些重要的定理 正弦定理 余弦定理展开编辑本段公式分类三角关系倒数关系:tan cot=1sin csc=1cossec=1商的关系:sin/cos=tan=sec/csc平方关系: 一个特殊公式(sina+sin)*(sina-sin)=sin(a+)*sin(a-)证明:(sina+sin)*(sina-sin)=2 sin(+a)/2 cos(a-)/2 *2 cos(+a)/2 sin(a-)/2=sin(a+)*sin(a-)1坡度公式我们通常把坡面的铅直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数正弦:sin=的对边/ 的斜边余弦:cos=的邻边/的斜边正切:tan=的对边/的邻边余切:cot=的邻边/的对边一般公式sin30=二分之一sin45=二分之根号二sin60=二分之根号三cos30=二分之根号三cos45=二分之根号二cos60=二分之一tan30=三分之根号三tan45=1tan60=根号三2二倍角公式正弦sin2A=2sinAcosA余弦正切tan2A=(2tanA)/(1-tan2(A)三倍角公式三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina(3/2)-sina(3/2)+sina=4sina(sin60+sina)(sin60-sina)=4sina*2sin(60+a)/2cos(60-a)/2*2sin(60-a)/2cos(60+a)/2=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosacos2a-(3/2)2=4cosa(cosa-cos30)(cosa+cos30)=4cosa*2cos(a+30)/2cos(a-30)/2*-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)现列出公式如下:sin2=2sincos tan2=2tan/(1-tan2() cos2=cos2()-sin2()=2cos2()-1=1-2sin2()可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中三倍角公式sin3=3sin-4sin3 =4sinsin(/3+)sin(/3-)cos3=4cos3 -3cos=4coscos(/3+)cos(/3-)tan3=tan()*(-3+tan()2)/(-1+3*tan()2)=tan a tan(/3+a) tan(/3-a)半角公式sin2(/2)=(1-cos)/2 cos2(/2)=(1+cos)/2 tan2(/2)=(1-cos)/(1+cos) tan(/2)=sin/(1+cos)=(1-cos)/sin万能公式sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2)其他sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式sin4A=-4*(cosA*sinA*(2*sinA2-1) cos4A=1+(-8*cosA2+8*cosA4) tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4)五倍角公式sin5A=16sinA5-20sinA3+5sinA cos5A=16cosA5-20cosA3+5cosA tan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2) cos6A=(-1+2*cosA)*(16*cosA4-16*cosA2+1) tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA-15*tanA4+tanA6)七倍角公式sin7A=-(sinA*(56*sinA2-112*sinA4-7+64*sinA6)cos7A=(cosA*(56*cosA2-112*cosA4+64*cosA6-7)tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6)八倍角公式sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1) cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2) tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8)九倍角公式sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3) cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3) tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8)十倍角公式sin10A = 2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4) cos10A = (-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1) tan10A = -2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10)N倍角公式根据棣美弗定理,(cos+ i sin)n = cos(n)+ i sin(n) 为方便描述,令sin=s,cos=c 考虑n为正整数的情形:cos(n)+ i sin(n) = (c+ i s)n = C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n- 4)*(i s)4 + . +C(n,1)*c(n-1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . =;比较两边的实部与虚部 实部:cos(n)=C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n-4)*(i s)4 + . i*虚部:i*sin(n)=C(n,1)*c(n-1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . 对所有的自然数n:cos(n):公式中出现的s都是偶次方,而s2=1-c2(平方关系),因此全部都可以改成以c(也就是cos)表示。sin(n):当n是奇数时:公式中出现的c都是偶次方,而c2=1-s2(平方关系),因此全部都可以改成以s(也 就是sin)表示。当n是偶数时:公式中出现的c都是奇次方,而c2=1-s2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cos)的一次方无法消掉。例. c3=c*c2=c*(1-s2),c5=c*(c2)2=c*(1-s2)2)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)sin2(A/2)=1-cos(A)/2cos2(A/2)=1+cos(A)/2半角公式两角和公式两角和公式cos(+)=coscos-sinsincos(-)=coscos+sinsinsin(+)=sincos+cossinsin(-)=sincos -cossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和公式sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)和差化积sin+sin =2sin(+)/2 cos(-)/2 和差化积公式sin-sin=2cos(+3)/2 sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos= -2sin(+)/2sin(-)/2tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin=-cos(+)-cos(-) /2coscos=cos(+)+cos(-)/2sincos=sin(+)+sin(-)/2cossin=sin(+)-sin(-)/2双曲函数sh a = ea-e(-a)/2ch a = ea+e(-a)/2th a = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)= sincos(2k+)= costan(2k+)= tancot(2k+)= cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)= -sincos(+)= -costan(+)= tancot(+)= cot公式三:任意角与 -的三角函数值之间的关系:sin(-)= -sincos(-)= costan(-)= -tancot(-)= -cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)= sincos(-)= -costan(-)= -tancot(-)= -cot公式五:利用公式-和公式三可以得到2-与的三角函数值之间的关系:sin(2-)= -sincos(2-)= costan(2-)= -tancot(2-)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= coscos(/2+)= -sintan(/2+)= -cotcot(/2+)= -tansin(/2-)= coscos(/2-)= sintan(/2-)= cotcot(/2-)= tansin(3/2+)= -coscos(3/2+)= sintan(3/2+)= -cotcot(3/2+)= -tansin(3/2-)= -coscos(3/2-)= -sintan(3/2-)= cotcot(3/2-)= tan(以上kZ)Asin(t+)+ Bsin(t+) =(A+2ABcos(-) sint + arcsin (Asin+Bsin) / A2 +B2 +2ABcos(-)表示根号,包括中的内容编辑本段诱导公式三角函数的诱导公式(六公式)公式一:sin(-) = -sincos(-) = costan (-)=-tan公式二:sin(/2-) = coscos(/2-) = sin公式三:sin(/2+) = coscos(/2+) = -sin公式四:sin(-) = sincos(-) = -cos公式五:sin(+) = -sincos(+) = -cos公式六:tanA= sinA/cosAtan(/2+)=cottan(/2)=cottan()=tantan(+)=tan诱导公式 记背诀窍:奇变偶不变,符号看象限记背诀窍:奇变偶不变,符号看象限万能公式万能公式sin=2tan(/2)/1+(tan(/2)2cos=1-(tan(/2)2/1+(tan(/2)2tan=2tan(/2)/1-(tan(/2)2其它公式三角函数其它公式(sin)2+(cos)2=1(平方和公式)1+(tan)2=(sec)21+(cot)2=(csc)2证明下面两式,只需将一式,左右同除(sin)2,第二个除(cos)2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论cotAcotB+cotAcotC+cotBcotC=1cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)2+(csca)2=(seca)2(csca)2幂级数展开式sin x = x-x3/3!+x5/5!-+(-1)(k-1)*(x(2k-1)/(2k-1)!+ x Rcos x = 1-x2/2!+x4/4!-+(-1)k*(x(2k)/(2k)!+ x Rarcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + (|x|1)arccos x = - (x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ) (|x|1)arctan x = x - x3/3 + x5/5 - (x1)无限公式sinx=x(1-x2/2)(1-x2/42)(1-x2/92)cosx=(1-4x2/2)(1-4x2/92)(1-4x2/252)tanx=8x1/(2-4x2)+1/(92-4x2)+1/(252-4x2)+secx=41/(2-4x2)-1/(92-4x2)+1/(252-4x2)-+(sinx)x=cosx/2cosx/4cosx/8(1/4)tan/4+(1/8)tan/8+(1/16)tan/16+=1/arctan x = x - x3/3 + x5/5 - (x1)和自变量数列求和有关的公式sinx+sin2x+sin3x+sinnx=sin(nx/2)sin(n+1)x/2)/sin(x/2)cosx+cos2x+cos3x+cosnx=cos(n+1)x/2)sin(nx/2)/sin(x/2)tan(n+1)x/2)=(sinx+sin2x+sin3x+sinnx)/(cosx+cos2x+cos3x+cosnx)sinx+sin3x+sin5x+sin(2n-1)x=(sinnx)2/sinxcosx+cos3x+cos5x+cos(2n-1)x=sin(2nx)/(2sinx)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。三角函数本质:根据三角函数定义推导公式根据右图,有sin=y/ r; cos=x/r; tan=y/x; cot=x/y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省公务员2025年公共基础冲刺卷
- 初中生演讲稿200字左右
- 高中语文必修上册【同步练习 含答案】-第三单元 念奴娇·赤壁怀古 永遇乐·京口北固亭怀 古声声慢(寻寻觅觅)
- 2025年考核办多选试题及答案
- 山西省2025年公务员行测专项训练冲刺卷
- 2025年初中历史七年级上学期知识梳理卷
- 2025年地盘考试题及答案
- 2025年数字摄影测量试题及答案
- 第二章 声现象 第2节 声音的特性 学案 人教版(2024)八年级上册
- 2025年初中一年级化学上学期物质鉴别卷
- 电工考证专栏2025年低压电工复审考试题库精细讲解(1)附答案
- 物流搬运劳务合同范本
- 隧道工程施工质量常见问题及解决方案
- 2025-2026学年苏教版三年级科学上册期中达标测试卷(三)含答案与解析
- 2025年党校条例试题及答案详解
- 2025年国家能源集团企业文化考试题库及答案
- 看一次禁毒电影活动方案
- 2025太原迎泽区社区劳动保障协理员和城镇最低生活保障协理员招聘考试模拟试题及答案解析
- 消防公司企业简介
- 艾滋病免疫重建不全临床诊疗专家共识
- 优生优育进社区知识培训课件
评论
0/150
提交评论