



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田市第八中学高二数学抽样方法(3)分层抽样教案 理 新人教a版必修3课题教学目标(1)理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;(2)掌握简单随机抽样、系统抽样、分层抽样的区别与联系 重难点正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。方法及教具结合实例对比讲解法,多媒体教学。教学过程二次备课 一、问题情境:1复习简单随机抽样、系统抽样的概念、特征以及适用范围2实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。由于样本的容量与总体的个体数的比为100:2500=1:25,所以在各年级抽取的个体数依次是,即40,32,28三、建构数学1分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”说明:分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用2三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。(2)确定比例:计算各层的个体数与总体的个体数的比。(3)确定各层应抽取的样本容量。(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多四、数学运用1例题:例1( 1)工厂生产的某种产品用传输带将产品送入包装车间,检验人员从传送带上每隔5分钟抽一件产品进行检验,问这是一种什么抽样法?(2)已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程?解:(1)这是将总体分成均衡的若干部分,再从每一部分按照预先订出的规则抽取一个个体,得到所需要的样本,故它是系统抽样(2)因总体来自三个不同车间,故适宜用分层抽样法,因抽取产品数与产品总数之比为40:400=1:10,所以,各车间抽取产品数量分别为15件、13件、12件,具体抽样过程在各车间产品中用随机抽样的方法依次抽取(过程略)例2一电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示: 很喜爱喜爱一般不喜爱2435456739261072答:用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值例3下列问题中,采用怎样的抽样方法较为合理?(1) 从10台电冰箱中抽取3台进行质量检查;(2) 某电影院有32排座位,每排有40个座位 ,座位号为。有一次报告会坐满了听众,报告会结束后,为听取意见,需留下32名听众进行座谈;(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。分析:(1)总体容量较小,用抽签法或随机数表法都很方便。 (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。 (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备安全检查培训制度课件
- 2026届湖南省长沙市芙蓉区长郡芙蓉中学九年级英语第一学期期末经典试题含解析
- 富贵菜种苗种植合同7篇
- 钢结构大棚基础合同4篇
- 委托合同-委托授权和委托合同6篇
- 数学竞赛中国试题及答案
- 黑龙江省哈尔滨市第六十九中学2026届九上化学期中质量跟踪监视模拟试题含解析
- 考点解析-冀教版8年级下册期末试卷含完整答案详解(名校卷)
- 四川省绵阳涪城区2026届九上化学期中学业质量监测试题含解析
- 设备使用课件模板
- 基于人工智能的药物不良反应预测与预警系统
- QCT268-2023汽车冷冲压加工零件未注公差尺寸的极限偏差
- 【大数据“杀熟”的法律规制探究17000字(论文)】
- 队列训练齐步的行进与立定
- 人教版小学六年级数学上册单元课后练习题 全册
- 初中九年级英语课件宾语从句 公开课比赛一等奖
- 患者安全和护理质量的关联
- 社区获得性肺炎诊治进展
- 拆除沥青路面基层施工方案
- 公司网络安全培训课件
- (115)-第一章毛泽东思想及其历史地位
评论
0/150
提交评论