




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦、余弦定理 解斜三角形知识网络1三角形基本公式:(1)内角和定理:a+b+c=180,sin(a+b)=sinc, cos(a+b)= -cosc,cos=sin, sin=cos(2)面积公式:s=absinc=bcsina=casinbs= pr = (其中p=, r为内切圆半径)(3)射影定理:a = bcosc + ccosb;b = acosc + ccosa;c = acosb + bcosa2正弦定理:证明:由三角形面积得画出三角形的外接圆及直径易得:3余弦定理:a2=b2+c2-2bccosa, ; 证明:如图abc中,当a、b是钝角时,类似可证。正弦、余弦定理可用向量方法证明。要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题4利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinaab时有两解;a=bsina或a=b时有 解;absina时无解。5利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。6熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力练习1(2006山东)在中,角的对边分别为,已知,则 ( )a.1b.2c.d.2在abc中,ab=3,bc=,ac=4,则边ac上的高为( )a. b. c. d.3(2002年上海)在abc中,若2cosbsina=sinc,则abc的形状一定是a.等腰直角三角形b.直角三角形c.等腰三角形d.等边三角形4. (2006全国)用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 ( )a. b. c. d. 5.(2006全国)已知的三个内角a、b、c成等差数列,且ab=1,bc=4,则边bc上的中线ad的长为_.6.(2006春上海)在中,已知,三角形面积为12,则 .四、经典例题做一做【例1】(2006天津)如图,在中,(1)求的值;(2)求的值. 【例2】在abc中,已知a=,b=,b=45,求a,c及边c【例3】(2006上海)如图,当甲船位于a处时获悉,在其正东方向相距20海里的b处有一艘渔船遇险等待营救 甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里c处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往b处救援(角度精确到)?_10_a_?_20_c_b【例4】已知o的半径为r,在它的内接三角形abc中,有成立,求abc面积s的最大值【研讨.欣赏】(2006江西)如图,已知是边长为的正三角形, 、分别是边、上的点,线段经过的中心.设.(1) 试将、的面积(分别记为与)表示为的函数;(2) 求的最大值与最小值.提炼总结1掌握三角形中的的基本公式和正余弦定理;2利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);3.利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。4边角互化是解三角形的重要手段 4.6 正弦、余弦定理 解斜三角形 【选择题】1.(2004浙江)在abc中,“a30”是“sina”的 ( )a.充分而不必要条件b.必要而不充分条件c.充分必要条件d.既不充分也不必要条件2.(2004全国)abc中,a、b、c分别为a、b、c的对边,如果a、b、c成等差数列,b=30,abc的面积为,那么b等于 ( )a.b.1+c.d.2+3.下列条件中,abc是锐角三角形的是 ( )a.sina+cosa=b.0c.tana+tanb+tanc0d.b=3,c=3,b=304.(2006全国)的内角a、b、c的对边分别为a、b、c,若a、b、c成等比数列,且,则 ( )a. b. c. d. 【填空题】5.(2004春上海)在中,分别是、所对的边。若, 则_6.在锐角abc中,边长a=1,b=2,则边长c的取值范围是_.【解答题】7.(2004春北京)在abc中,a、b、c分别是a、b、c的对边长,已知a、b、c成等比数列,且a2c2=acbc,求a的大小及的值.8.(2005春北京)在abc中,sina+cosa=,ac=2,ab=3,求tana的值和abc的面积.9. (2004全国)已知锐角abc中,sin(a+b)=,sin(ab)=.(1)求证:tana=2tanb;(2)设ab=3,求ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年威海乳山市卫生健康局事业单位公开招聘工作人员(41人)模拟试卷及完整答案详解一套
- 2025广西崇左天等县宁干乡卫生院招聘中医科专业技术编外工作人员2人模拟试卷及参考答案详解一套
- 2025年泰安市泰山区面向全国引进急需紧缺人才(50名)考前自测高频考点模拟试题及一套答案详解
- 2025年池州市贵池区事业单位公开招聘67人考前自测高频考点模拟试题及答案详解(必刷)
- 2025年孝感高新区公开招聘教师35人考前自测高频考点模拟试题及参考答案详解1套
- 2025贵州黔南州都匀市中小企业融资担保有限责任公司拟聘用人员模拟试卷附答案详解(完整版)
- 2025安徽含山县县级公立医院招聘紧缺人才13人考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025年宁东镇公开招聘公益性岗位人员模拟试卷有答案详解
- 2025年榆林华源电力有限责任公司招聘(5人)模拟试卷及答案详解(名师系列)
- 2025届春季中建八局总承包公司校园招聘正式启动模拟试卷附答案详解(突破训练)
- 内科学-中毒总论
- 测量员岗前培训试题
- GB/T 7562-2018商品煤质量发电煤粉锅炉用煤
- GB/T 36524-2018冲模矩形截面压缩弹簧安装尺寸和颜色标识
- 2004三菱格蓝迪grandis维修手册
- T∕IAC CAMRA 20.3-2022 事故汽车维修工时测定及应用规范 第3部分:拆装工时
- 智能制造 增材制造技术课件
- 中国古代数学中的数学文化课件
- 锚的作用与锚泊解析课件
- FHLG20型高频高压发生器说明书
- 压疮的预防及护理技术操作考核评分标准
评论
0/150
提交评论