




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、解:令,则,两边对x求导,得 从得 时,;从得 ,为参数,为任意常数.经检验得,()是方程奇解.2、解:令,则,两边对x求导,得 ,解之得 ,所以,且y=x+1也是方程的解,但不是奇解.3、解:这是克莱洛方程,因此它的通解为,从 中消去c,得到奇解.4、解:这是克莱洛方程,因此它的通解为 ,从 中消去c,得到奇解 .5、解:令,则,两边对x求导,得 ,解之得 ,所以 ,可知此方程没有奇解.6、解:原方程可化为,这是克莱罗方程,因此其通解为,从 中消去c,得奇解.7、解:令,则,两边对x求导,得 ,所以 ,可知此方程没有奇解.8、解:可知此方程没有奇解.9、解:令,则,两边对x求导,得 解之得 ,所以 ,且 也是方程的解,但不是方程的奇解.10、解:这是克莱罗方程,因此方程的通解为,从中消去c,得方程的奇解.(二)求下列曲线族的包络.1、解:对c求导,得 x+2c=0, , 代入原方程得, 经检验得,是原方程的包络.2、解:对c求导,得 ,代入原方程得 ,即,经检验得是原方程的包络.3、解:对c求导,得 2(x-c)-2(y-c)=0, ,代入原方程得.经检验,得 是原方程的包络.4、解:对c求导,得 -2(x-c)=4, c=x+2,代入原方程得 ,,经检验,得是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以x、y表坐标系,则曲线上任一点(x,y(x))的切线方程为,它与x轴、y轴的截距分别为,按条件有 ,化简得,这是克莱洛方程,它的通解为一族直线,它的包络是,消去c后得我们所求的曲线.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从 中消去p后而得的曲线; c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程中消去c而得的曲线,显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解.acknowledgements my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent and illuminating instruction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listening to me and helping me work out my problems during the difficult course of the thesis. my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent and illuminating instruction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow cl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水彩蘑菇课件
- 2025年度老旧物业置换合同含深度修缮责任及风险分担细则
- 2025年商用太阳能电站建设与运营维护合同
- 砖块行业年度会员费缴纳及行业资源共享合同
- 2025年新能源小客车指标租赁及车辆全权委托租赁服务合同
- 2025年医疗健康管理系统定制开发与患者数据保密协议
- 口岸基本知识培训心得
- 2025年绿色建筑GRC构件定制加工及安装工程承包合同
- 2025年虚拟现实直播技术应用与推广服务合作协议
- 2025年校园体育馆建筑安全责任书及施工安全管理协议
- 2025年计算机一级考试题库(附答案)
- 人卵母细胞成熟度分级
- 2025年四川大学生服务基层项目招募考试(医学基础知识)历年参考题库含答案详解(5套)
- 刑法基本原则课件
- 2025年会议接待考试题库
- 2025年贵州省中考英语试卷
- 政府职能边界界定-洞察及研究
- 新疆疫苗管理办法
- 2025年重庆出租车资格证区域考试题库区域考试
- 广州市越秀区招聘卫生健康系统事业单位事业编制人员考试真题2024
- 医疗废物监督管理课件
评论
0/150
提交评论