砌体结构墙体裂缝的成因与防治.doc_第1页
砌体结构墙体裂缝的成因与防治.doc_第2页
砌体结构墙体裂缝的成因与防治.doc_第3页
砌体结构墙体裂缝的成因与防治.doc_第4页
砌体结构墙体裂缝的成因与防治.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北工程大学毕业论文1裂缝对砌体结构建筑物的危害砌体结构出现裂缝和产生变形对建筑物的危害主意表现在结构安全性和房屋使用功能两个方面,砌体结构受力裂缝的出现预示着结构承载力可能不足,结构变形的出现虽然对砌体抗压承载力没有直接影响,但贯穿性裂缝的形成会降低结构的整体稳定性和抗震性能。外墙、楼板和屋面结构裂缝会影响结构防水,造成房屋渗漏,明显的结构裂缝或较大的变形会影响建筑物的美观。2裂缝的类型及其产生的原因分析砌体结构的房屋的裂缝一般是单因素典型裂缝,而这种裂缝的形态与产生的原因有较强的对应关系。大致分为温度收缩裂缝、地基沉降差异裂缝、受力裂缝及干缩裂缝等几种类型。2.1温度裂缝热胀冷缩,是各种物质的一个物理物征,建筑材料及其所形成的构件也不例外。在建筑中,各构件相互连接成一空间整体,混凝土和砌体之间的变形差异导致构件中产生温度应力,混凝土顶盖变形大,墙体变形相对较小,导致砖砌体和混凝土屋盖之间产生约束应力。当外界温度升高时,使屋盖受压,墙体受拉、受剪。当约束条件下作用于构件的温度应力足够大时,超过砌体的抗拉或抗剪强度时就产生了裂缝,这就是温度裂缝产生的直接原因。温度裂缝是造成墙体早期裂缝的主要原因,这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。这类裂缝裂缝常在建筑物(特别是那些纵向较长的)混凝土平屋盖顶层两端内外纵墙上,门窗洞两边,以及砌体女儿墙根部。温度裂缝形态呈“八”字型或直线型,且显对称性,但有时又仅一端有。譬如混凝土平屋盖顶层两端内外纵墙上的“八”字缝。由于房屋两端为“自由端”,水平约束力较小;当屋面向两端热胀时,致使下部砌体出现正“八”字型缝,当冷缩时,就出现倒“八”字型缝。而在温度上升的时候由于混凝土的膨胀大于砌体,楼板的膨胀受砌体的约束,从而在女儿墙根部形成向外的剪应力;而气温下降时,对女儿墙根部形成向内的剪应力,周而服始,墙体根部水平裂缝就产生了。剪应力在墙体内的分布为两端附近较大、中间渐小、顶层大、下部小,所以温度裂缝也有明显的规律性,即两端重中间轻、顶层重往下轻、阳面重阴面轻。砌体结构的房屋的裂缝一般多产生于房屋的顶层,特别是房屋两端的纵横墙体,裂缝沿屋顶圈梁与墙体交接面水平分布及墙体外角斜向分布,其次是门窗洞口45度斜向分布。这类裂缝的产生主要是结构温度收缩变形不协调所致。有些温度裂缝的形成是由于温差太大的原因,例如,西气东输西段工程的阀室和站场建成后发现,在很多房屋的圈梁处出现了水平裂缝,严重的呈连续状。通过现场实地认真的勘察,发现除了以上裂缝外,其他地方均没有异常情况,排除了地基沉降的原因,大家一致认为这是由于温度引起的温度裂缝。因为西气东输西段工程的阀室和站场大多处于位于亚洲大陆腹地,远离海洋,近沙漠,有些直接位于砾漠(戈壁滩)区,属大陆干旱气侯区。这些地方具有日照长,太阳辐射强,气温低,昼夜温差大,夏季受阳光直射时间较长,温度可达40左右,而温度极端最低值也可达-40。所以这些地方气温变化很大,我们知道混凝土的线膨胀系数(10X106m/)远大于砖墙的线膨胀系数(5X106m/),这样使得两者的温度变形差别很大,因此在圈梁和砖墙接触处产生一个剪应力使砖墙处于受剪及受拉状态而出现裂缝。2.1.1温度裂缝产生机理对于砖砌体的结构,砖砌体的线膨胀系数5106,是混凝土的一半。当外界温度升高时,混凝土顶盖变形大,墙体变形相对较小,导致砖砌体和混凝土屋盖之间产生约束应力。使屋盖受压,墙体受拉、受剪。当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。混凝土砌块墙体的线膨胀系数与混凝土屋盖相同。在夏季阳光照射下,两者之间存在一定的温差。屋面最高温度可达4050,而顶层外墙平均最高温度约为3035。屋面和顶层外墙存在1015的温差,两者的温差可能引起墙体开裂。另外,从材料上看,相同砂浆强度等级下抗拉、抗剪强度混凝土砌块比砖砌体小了很多,沿齿缝截面弯拉强度仅为砖砌体的3035,沿通缝弯拉强度仅为砖砌体的4550,抗剪强度仅为砖砌体的5055。因此,在相同受力状态下,混凝土砌块抵抗拉力和剪力的能力要比砖砌体小很多,所以更容易开裂。2.1.2 温度应力的估算砌体结构的温度应力可通过下式估算: (11)(12)当顶板与墙体材料不同时, 式中,Cx水平阻力系数,混凝土板与墙体Cx=0.30.6N/mm3,混凝土板和钢筋混凝土圈梁Cx=1.0N/mm3; t墙厚; b一面墙负担的楼板宽度; h顶板厚度; Es混凝土的弹性模量; 1墙的线膨胀系数,砖砌体5106;2顶板线膨胀系数,混凝土10106;T1墙的温度;T2顶板的温度;L墙长。式(11)中max为弹性剪应力。考虑升温较快,取应力松弛系数H(t)=0.70.8,则砌体的徐变剪应力为: (13)对于顶层墙体,墙体的压应力较小,墙体的剪应力近似等于主拉应力。根据式(11),墙体的剪应力与温差、水平阻力系数Cx以及建筑物长度有关。从式(11)可知,墙体剪应力与温差成正比。因此,采取隔热措施以减少温差,可达到减小主拉应力的目的;墙体剪应力与 成正比。如水平阻力系数Cx降低30,则剪应力降低16。因此,可通过在钢筋混凝土屋面板与墙体圈梁的接触面处设置水平滑动层来减少顶板与墙体的约束作用,滑动层可采用两层油毡夹滑石粉或橡胶片等;剪应力和建筑物的长度呈非线性关系,增加长度,剪应力随之增加。 2.1.3 温度变形的估算 粘土和混凝土砌体都有与温度变化成比例的特性,温度变形的大小可以根据热膨胀系数计算。构件受到温度变化为T的构件,长度变化L可以表达为(14)其中,L温度变形;热膨胀系数,砖砌体5106,混凝土砌块10106;L受到温度变化的构件长度;T温度变化。2.2干缩裂缝 烧结粘土砖,包括其它材料的烧结制品,其干缩变形相对很小,但变形完成比较快。粘土砖随含水率的增加而膨胀,在含水率降低时砖不会收缩,即这种膨胀不会因为在大气温度中变干而收缩。砖中的含水量取决于原材料的种类和烧制温度范围,只要不使用新出窑的满足了龄期的砖,一般不考虑砌体本身的干缩变形引起的附加应力。当砖从窑中取出时尺寸最小,然后随着含水率的增加而膨胀,即在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,当砌体暴露在潮湿的空气中它开始膨胀,在开始的几个星期内膨胀最大,膨胀会以很低的速率持续几年,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小。收缩裂缝不是结构裂缝,但它们破坏了墙体外观。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在屋顶圈梁下出现的水平缝和水平包角裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。收缩裂缝一般多出现在下部几层,有的砌块房屋山墙大墙面中间部位出现了由底层一直延伸至3、4层的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝;空腔墙内外叶墙用不同材料或温度、湿度变化引起的墙体裂缝,这种情况一般外叶墙裂缝较内叶墙严重。此外,由于砌筑砂浆强度不高,灰缝不饱满,干缩引起的裂缝往往呈发丝状分散在灰缝缝隙中,清水墙时不易被发现,当有粉刷抹面时就显露出来。干缩引起的裂缝宽度不大,且裂缝宽度较均匀。 砌体结构中的混凝土相对于其他结构更容易产生干缩裂缝。因为在砌体结构当中,混凝土在空气中硬化时,其中的水分更容易逐渐蒸发, 使毛细孔中形成负压,随着空气湿度的降低,负压逐渐增大,产生收缩力,当收缩受限制产生的拉应力超过其本身的抗拉强度时混凝土就会开裂而产生干缩裂缝。此类裂缝,无方向性,裂缝较细0.1mm-0.3mm 。平常我们看到的有些面层空鼓的斜裂缝,往往也是由于墙体面层空鼓、水泥干缩引起的。阳台栏板与砖砌体接槎处裂缝多由于混凝土二次浇筑引起。施工时未能在构造柱上留出钢筋进行搭接和焊接,导致钢筋混凝土栏板由于温度变化而使混凝土产生收缩,形成裂缝2.2.1干缩裂缝的产生机理粘土砌体和混凝土砌体对含水率变化的反应不同。粘土砌块随含水率的增加而膨胀。在含水率降低时砖不会收缩。即这种膨胀不会因为在大气温度中变干而收缩。砖中的含水量取决于原材料的种类和烧制温度范围。当砖从窑中取出时尺寸最小,然后随着含水率的增加而膨胀。当砖暴露在潮湿的空气中它开始膨胀,在开始的几个星期内膨胀最大,膨胀会以很低的速率持续几年,砖的长期湿膨胀在0.0002和0.0009之间。 混凝土砌块是混凝土拌合物经浇注、振捣、养生而成。混凝土在硬化过程中逐渐失水而干缩,砌干缩量因材料和成型质量而异,并随时间增长而逐渐减小。在自然条件下,成型28天后,混凝土砌块收缩趋于稳定。其干缩率为0.030.035,含水量在5060左右。砌成砌体后,在正常使用条件下,含水量继续下降,可达10左右,其干缩率为0.0180.076。对于干缩已趋稳定的混凝土砌块,如再次被浸湿后,会再次发生干缩,通常称为第二干缩。混凝土砌块在含水饱和后的第二干缩,稳定时间比成型硬化过程的第一干缩时间要短,一般为15天左右。第二干缩的收缩率约为第一干缩的80左右。当混凝土砌块的收缩受到约束并且收缩引起的拉应力超过了块材的抗拉强度或块材与砂浆之间的抗弯强度,会出现收缩裂缝。收缩裂缝不是结构裂缝,但它们破坏了墙体外观。2.2.2干缩变形的估算 粘土和混凝土砌体对含水率变化的反应不同。当失去水分时,混凝土砌块会收缩,而粘土砌块会随含水率的增大而膨胀。由水分变化引起的变形可以根据与热膨胀相同的原理估计:式中,k对粘土砌体采用湿膨胀系数ke,对混凝土砌体采用收缩系数km;L砌体长度;收缩变形。砌体标准联合委员会(Masonry Standards Joint Committee,缩写为MSJC)规范规定粘土砌体的湿膨胀系数值ke为0.0003。由控湿的混凝土砌块砌筑的砌体km=0.15sl,由非控湿的混凝土砌块砌筑的砌体km=0. 5sl。sl为混凝土砌块的总线性干缩值,其值不超过0.00065。2.3地基变形 房屋下面的地基承受整幢房屋的荷载而产生压缩变形,房屋随之沉降。当地基土层不一致或土层一致而上部荷载不均匀时,结构物刚度差别悬殊时,地基就产生不同的压缩变形而形成不均匀沉降,使房屋的墙体中产生弯曲和剪切引起的附加应力。当差异沉降较大时,墙体内产生的拉应力将超过砌体的抗拉强度,墙体中会出现裂缝。地基、基础、建筑物构成了一个整体、共同工作,其内力和变形形态与土的性质、建筑物与地基的刚度、基础与建筑物的尺寸形状、材料的弹塑性性质、徐变等影响因素有关。地基不均匀沉降裂缝的形态是多种多样的,有些裂缝随时间长期变化,裂缝宽度较宽,有时宽至数厘米。地基变形裂缝主要分为剪切裂缝和弯曲裂缝,常见的有八字裂缝和斜向裂缝,多出现在房屋中下部且发生于房屋中下部的裂缝较上部宽度大。地基沉降差异是引起砌体结构建筑物裂缝的一个主要的因素。由于地基沉降差异引起的裂缝多为斜裂缝,此类裂缝一般情况下裂而不鼓,往往贯通到基础。尤其对于软土地基和湿陷性黄土地基,当地基处理不当时,很容易在底层墙体产生斜向裂缝和窗下墙竖向裂缝。在房屋纵横墙地基不均匀沉降的情况下,将使墙体承受较大的剪切力,当结构刚度稍差、施工质量和材料强度不能满足要求时,会导致墙体开裂。另外,当房屋层数相差较多而没有设置沉降缝时,容易在交接部位产生竖向裂缝,这类裂缝常伴有较大的地基不均匀下沉。2.3.1地基不均匀沉降裂缝的产生机理 一般情况下,地基受到上部传递的压力,引起地基的沉降变形呈凹形,常称为“盆形沉降曲面”。这是由于中部压力相互影响高于边缘处相互影响,以及边缘处非受载区地基对受载区下沉有剪切阻力等共同作用的结果,导致地基反力在边缘区较高。这种沉降使建筑物形成中部沉降大、端部沉降小的弯曲,产生正弯距。结构中下部受拉,端部受剪,特别是由于端部地基反力梯度很大,端部的剪应力很大,墙体由于剪力形成的主拉应力破裂,裂缝呈正八字形。由于墙体中上部受压并形成“拱”作用,墙体裂缝越靠近地基和门窗孔越严重。且中下部开裂区的墙体有自重下坠作用,造成垂直方向拉应力,可能形成水平裂缝。当地基中部有回填砂、石,或中部地基坚硬而端部软弱,或由于荷载相差悬殊,建筑物端部沉降大于中部时,会形成负弯距。主拉应力将引起墙体的斜裂缝或倒八字裂缝。局部的沉降不均不仅可以引起斜裂缝,由于垂直沉降还可能引起砌体的水平裂缝。2.3.2 影响地基沉降裂缝的因素 地基、基础、建筑物构成一个整体,共同工作。其内力和变形形态与土的性质、建筑物与地基的刚度、基础与建筑物的尺寸形状、材料的弹塑性性质、徐变等有关。(1)徐变 建筑物的下沉、水平位移、温度、湿度变化引起的变形,除了绝对数量外,变形速率是一个重要因素。只要变形是缓慢的,则多数建筑物能经受较大的变形而不破坏。其主要原因就是由于建筑材料都具有徐变特性,在变形过程中,其内应力会随着变形速度的下降而松弛。(2)建筑物的形状 平面形状复杂的建筑物,如“I”、“T”、“L”、“E”字形等,在纵横单元交叉处基础密集,地基附加应力重叠,使地基沉降量增大。同时,此类建筑物整体性差,刚度不对称,在地基产生不均匀沉降时容易发生墙体开裂。因此,遇不良地基时,在满足使用的情况下应尽量采用平面形状简单的建筑形式。2.4受力裂缝受力裂缝多出现在抗震设防区的建筑物上,虽然有圈梁构造柱、钢筋混凝土现浇板等整体连接,但这也不能完全保证不出现裂缝。比如发生在房屋底层窗台处的竖向裂缝,多数是由于纵墙开窗较大,地基受荷载后变形不均匀,窗台墙起到反梁的作用而引起的。在钢筋混凝土条形基础中,基础内一般均未设置基础梁,仅靠圈梁、构造柱等来加强建筑物的整体刚度,当地基受荷载较大时,窗台墙因反向变形过大而开裂。有些受力裂缝是由于地基沉降不均匀和温度的双重因素形成应力而产生的,我们把这种情形也归为受力裂缝。比如钢筋混凝土现浇板跨中裂缝,如果地基不均匀沉降,将使钢筋混凝土现浇板单边下沉而其他边又受到支座的约束,这样会导致在混凝土现浇板内部产生拉应力,而且,跨中多是施工缝的留置处,按照规范的要求:施工缝的位置宜留在结构受剪力较小且便于施工的部位。所以,板在其他支座的约束下,由于混凝土内部的拉应力的作用,加上混凝土现浇板受温差作用的影响,混凝土内部产生的拉应力在周围支座的约束下,要求在现浇板的最薄弱位置释放能量,于是在板跨中产生裂缝。2.5防止因设计原因而引起的墙体裂缝(1)在局部软弱地基中如处理不当,则可能产生不均匀沉降,当上部结构刚度不足以抵抗由不均匀沉降而产生的内应力时,即发生开裂。(2)房屋过长或型体复杂,易产生不均匀沉降或温差裂缝。(3)由于相邻建筑物基础的影响,地基易产生附加沉降。(4)设计时未进行荷载不利组合,导致使用荷载分布与设计值相差过大。(5)砌体强度设计不足。(6)圈梁设计过小或强度过低,洞口过梁搭接长度小于250毫米等。(7)大梁搁置在砌体上,砌体局部承压面不足或偏小,发生开裂。(8)因大梁刚度偏小而产生挠度,嵌固在墙内的梁端发生位移造成墙体开裂。2.6其他裂缝当然裂缝的产生还与材料、施工、环境及荷载等因素有关,例如施工时,钢筋的是否调直就是现浇板产生裂缝的一个重要原因。钢筋未调直就意味着钢筋受力后达不到屈服强度,随着混凝土内部拉应力的增大,应变的增长速度超过了应力的增长速度而在板中产生微裂缝,微裂缝随荷载的增加而发展,混凝土塑性变形也逐渐增加,最后形成比较明显的裂缝。3裂缝的预防、控制措施在目前的技术经济水平下,我们尚不能完全防止和杜绝由于钢筋混凝土屋盖的温度变形和砌体干缩变形引起的墙体局部裂缝。只能通过一些合理的构造措施,使砌体房屋墙体的裂缝的产生和发展达到可接受的程度。 3.1防止主要由温度变化引起的砌体结构开裂(1)屋盖上设置保温层或隔热层,减缓热胀冷缩动力源;(2)在屋面水泥砂浆找平层或刚性防水层适当部位设置分仓缝(控制缝),控制缝的间距不大于30m;(3)当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;(4)建筑物温度伸缩缝的间距除应满足砌体结构设计规范BGJ3-88第5.3.2条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m;(5)女儿墙一定范围增加构造柱,分散温度应力;(6)非地震地区,在房屋顶层宜设钢筋混凝土圈梁。若采用钢筋混凝土圈梁,圈梁不宜外露。若不设圈梁,可在屋盖四周檐口下的砌体内,配置适当转角钢筋。3.2防止主要由墙体材料的干缩引起的裂缝(1)选用干缩值低的墙材。控制砌筑时材料的含水量(先让材料干缩后砌墙)。采用低强度砂浆和长度小的砖块,可以避免砖块的断裂,并将细小裂缝均匀分散到各个垂直的灰缝隙中,避免变形和应力集中,累加出现大裂缝;(2)面积较大的墙体采用在墙体内增设构造梁柱的构造措施。如墙体长度超过5,可在中间设置钢筋混凝土构造柱;当墙体高度超过3(120厚墙)或4(180厚墙)时,须在墙中腰处增设钢筋混凝土腰梁,或设置伸缩缝;(3)正确掌握各种砌块使用时的含水率。砌体在生产储存期、运输、现场堆放等均要防止被水浸湿,雨季还应做好对砌块和砌体的遮盖。施工时,一般提前12洒水稍作湿润。砌块含水深度以表层810为宜;(4)构造措施之一(设置控制缝):控制缝的设置位置:a.在墙的高度突然变化处设置竖向控制缝;b.在墙的厚度突然变化处设置竖向控制缝;c.在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;d.在门、窗洞口的一侧或两侧设置竖向控制缝;e.竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;f.控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝; g.控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。控制缝的间距:a.对有规则洞口外墙不大于6mm;b.对无洞墙体不大于8m及墙高的3倍;c.在转角部位,控制缝至墙转角的距离不大于4.5m;(5)构造措施之二(设置灰缝钢筋):a.在墙洞口上、下的第一道和第二道灰缝,钢筋伸入洞口每侧长度不应小于600mm;b.在楼盖标高以上,屋盖标高以下的第二或第三道灰缝,和靠近墙顶的部位;c.灰缝钢筋的间距不大于600mm;d.灰缝钢筋距楼、屋盖混凝土圈梁或配筋带的距离不小于600mm;e.灰缝钢筋宜采用小螺纹钢筋焊接网片,网片的纵向钢筋不小于25,横筋间距不宜大于200mm;f.对均匀配筋时含钢率不少于0.05%,局部截面配筋,如底、顶层窗洞上下不小于38;g.灰缝钢筋宜通长设置,当不便通长设置时,允许搭接,搭接长度不应小于300mm;h.灰缝钢筋两端应锚入相交墙或转角墙中,锚固长度不应小于300mm;i.灰缝钢筋应埋入砂浆中,灰缝钢筋砂浆保护层,上下不小于3mm,外侧小于15mm,灰缝钢筋宜进行防腐处理;j.当利用灰缝钢筋作砌体抗剪钢筋时,其配筋量应按计算确定,其搭接和锚固长度尚不应小于75d和300mm;k.不配筋的外叶墙应设控制缝,控制缝间距不宜大于6m;l.设置灰缝钢筋的房屋的控制缝的间距不宜大于30m。(6)构造措施之三(在建筑物墙体中设置配筋带):a.在楼盖处和屋盖处;b.墙体的顶部;c.窗台的下部;d.配筋带的间距不应大于2400mm,也不宜小于800mm;e.配筋带的钢筋,对190mm厚墙,不应小于212,对250300mm厚墙不应小于216,当配筋带作为过梁时,其配筋应按计算确定;f.配筋带钢筋宜通长设置,当不能通长设置时,允许搭接,搭接长度不应小于45d和600mm;g.配筋带钢筋应弯入转角墙处锚固,锚固长度不应小于35d和400mm;h.当配筋带仅用于控制墙体裂缝时,宜在控制缝处断开,当设计考虑需要通过控制缝时,宜在该处的配筋带表面作成虚缝,以控制可预料的裂缝位置;i.对地震设防裂度7度的地区,配筋带的截面不应小于190mm200mm,配筋不应小于410;j.设置配筋带的房屋的控制缝的间距不宜大于30m。3.3防止主要由地基沉降引起的裂缝(1)建筑物的平面、体型尽量简化、力求简单;(2)合理设置沉降缝,在建筑物平面转折处、建筑高度荷载突变处、结构类型不同处以及地基土软硬交界处设置沉降缝;(3)减轻结构自重;(4)增强建筑物的刚度和强度,设置封闭圈梁和构造柱,特别是增强顶层和底层圈梁,合理布置纵横墙,采用整体性好、刚度大的基础形式,大跨度窗台采用钢筋混凝土窗台梁并根据规范要求在窗洞两侧增加构造柱等;(5)减小或调整基底的附加应力,改变基础地面尺寸,尽量简化基础受力,采用单一基础类型,使不同荷载的基础沉降量接近;(6)采用天然地基做持力层的,基槽清理一定要到位;(7)钻孔混凝土搅拌桩在打桩钻孔时清孔要彻底,减少桩基础的沉降。3.4受力裂缝防治措施(1)嵌缝填补法。将裂缝两侧抹灰凿掉,并清理干净,采用M10聚合水泥砂浆,(掺入107胶),用勾缝刀、抹子、刮刀等工具将砂浆填入缝内,然后重新抹灰,经过一段时间后,填严的裂缝还会开裂,但一般要比原来小许多,可用白胶泥填补,最终可以从外观上消除裂缝。此法对微型小裂缝最适宜。(2)在墙体单侧或两侧加钢筋网加固法。先将墙体的抹灰铲去,刷洗干净,用U形钢筋按一定的间距钉入砖缝,以固定钢筋网,再用M10水泥砂浆分层抹平。这种方法通常用于对裂缝大于1mm的贯通裂缝的处理。(3)剔缝埋入钢筋法。在裂缝处每隔5皮砖剔开一道砖缝,每边长50cm,深5cm,各埋入16钢筋,钢筋端部加直钩,钩子深入砖墙裂缝中,用M10水泥砂浆灌缝。采用此法应注意不要在墙体的两侧剔同一条缝,且必须在加固好一面、砂浆达到一定强度后再处理另一面,防止因扰动而降低砂浆强度,另应注意浇水养护。(4)钢筋混凝土联结法。在裂缝处,每隔810皮砖,抽砖嵌入预制钢筋混凝土块,四周要清扫干净,润水以M10水泥砂浆砌筑,保证四周密实且按原砖墙砌法及裂缝走向而定,混凝土标号C15,内配4钢筋,其他部位以M10水泥砂浆填补密实。(5)加设拉条法。沿裂缝每隔5皮砖钻孔4个,分别埋入10螺栓和6 S形钢筋拉杆将裂缝两侧螺栓焊接,然后以M10水泥砂浆将砖洞及裂缝补抹。(6)拆砖重砌法。裂缝处拆除50100cm长砖墙,用比原设计标号高一级且不低于M5的砂浆重新按原砌体走向进行砌筑,新老砌体结合密实。处理时要注意拆除一处修补一处并注意安全。3.5因设计原因而引起的墙体裂缝防治措施(1)对局部软弱地基应作加强处理,同时应加强上部结构刚度,对膨胀土、湿陷性黄土应作特殊处理。(2)相邻建筑物间基础应留有一定间隙,同时应计算相邻基础应力叠加时产生的沉降量,使该沉降量与整个建筑物沉降量相同。(3)计算时,认真进行不利荷载组合;设计中,注明使用荷载值。(4)认真验算砌体强度、验算砌体局部承压,当局部承压不足时应设置砼垫块。(5)各构件刚度应满足规范规定的变形要求。(6)对较长的房屋,其顶层的房屋端开间应加强刚度。(7)做好屋面保温层设计。3.6其它裂缝 这些缝比如未可遇见的由于地震引起的裂缝;施工洞预留不当造成的洞边缝;施工过程中的通缝;砌体砂浆不饱满、砌体上墙不浇水等形成的缝隙等。(1)设计时按抗震规范要求设计并适当提高砌体砂浆标号;(2)施工时严格要求,施工人员需上岗前开碰头会进行技术交底并有上岗证;(3)建筑材料需合格;(4)严格按照验收规范进行施工和监督,特别在填充墙方面施工单位和监理单位有时会疏忽。4防止或减轻房屋其它有关部位墙体开裂的构造措施根据砌体材料、结构形式选择或采用下列构造措施:4.1增强砌体抗裂能力的措施(1)设置基础圈梁或增加其刚度。(2)在底层窗台下砌体灰缝中设置3道24焊接钢筋网片或26钢筋;或采用现浇混凝土配筋带或窗台板,灰缝钢筋或配筋带不少于38并应伸入窗间墙内不小于600mm。(3)在墙体转角和纵横墙交接处沿竖向设置拉结钢筋或钢筋网片。对砖砌体拉结筋的数量每120mm厚墙不少于16,竖向间距不大于500mm;对砌块砌体拉结网片不小于24,竖向间距不大于600mm。拉结钢筋和钢筋网片埋入砌体的长度,从转角墙或交接墙内侧算起每边不小于600mm。(4)对灰砂砖、粉煤砖砌体房屋尚宜在下列部位加强:a.在各层门窗过梁上方的水平灰缝内及窗下第一和第二道水平灰缝内设置焊接钢筋网片或26钢筋,其伸入两边窗间墙内不小于600mm。b.当实体墙的长度大于5m,在每层墙高中部设置23道焊接钢筋网片或36的通长水平钢筋,其竖向间距为500mm。(5)对混凝土砌块砌体房屋尚宜在下列部位加强:a.在门窗洞口两侧不少于一个洞口中设置不小于112钢筋,钢筋应在楼层圈梁或基础梁锚固,并采用不低于Cb20混凝土灌实;b.在顶层和底层设置通长钢筋混凝土窗台梁,窗台梁的高度宜为块高的模数,纵筋不少于410,箍筋6200、C20混凝土,其它各层门窗过梁上方及窗台下的配筋要求,宜符合本节4.1)的要求;c.对实体墙的长度大于5m的砌块,沿墙高400mm配置不小于24通长焊接网片,网片横向钢筋的间距为200mm,直径同主筋。d.在门窗洞口两边墙体的水平灰缝中,设置长度不小于900mm,竖向间距为400mm的24焊接网片。e.灰砂砖、粉煤灰砖砌体宜采用粘结性好的砂浆,混凝土砌块应采用专用砂浆,其强度等级不宜低于Mb10。4.2在墙体中设置竖向控制缝本措施可用于所有材料的砌体,但更适于干缩变形较大的灰砂砖、粉煤灰砖、混凝土砌块等砌体结构的裂缝控制,房屋墙体控制缝设置的位置和间距可按下列规定采用:(1)在建筑物墙体高度或厚度突然变化处,在门

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论