




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
, 初等变换的定义,对换变换,倍法变换,消法变换,三种初等变换都是可逆的,且其逆变换是 同一类型的初等变换,反身性,传递性,对称性, 矩阵的等价,三种初等变换对应着三种初等矩阵, 初等矩阵,由单位矩阵 经过一次初等变换得到的矩阵称 为初等矩阵,()对换变换:对调两行(列),得初等 矩阵 ,()倍法变换:以数 (非零)乘某行( 列),得初等矩阵 ,()消法变换:以数 乘某行(列)加到另 一行(列)上去,得初等矩阵 ,经过初等行变换,可把矩阵化为行阶梯形矩 阵,其特点是:可画出一条阶梯线,线的下方全 为0;每个台阶只有一行,台阶数即是非零行的 行数,阶梯线的竖线(每段竖线的长度为一行) 后面的第一个元素为非零元,也就是非零行的第 一个非零元,例如, 行阶梯形矩阵,经过初等行变换,行阶梯形矩阵还可以进一 步化为行最简形矩阵,其特点是:非零行的第一 个非零元为1,且这些非零元所在列的其它元素都 为0,例如, 行最简形矩阵,对行阶梯形矩阵再进行初等列变换,可得到 矩阵的标准形,其特点是:左上角是一个单位矩 阵,其余元素都为0,例如, 矩阵的标准形,所有与a等价的矩阵组成的一个集合,称为一 个等价类,标准形 是这个等价类中形状最简单的 矩阵,定义, 矩阵的秩,定义,定理,行阶梯形矩阵的秩等于非零行的行数, 矩阵秩的性质及定理,定理,定理, 线性方程组有解判别定理,齐次线性方程组:把系数矩阵化成行最简形 矩阵,写出通解,非齐次线性方程组:把增广矩阵化成行阶梯 形矩阵,根据有解判别定理判断是否有解,若有 解,把增广矩阵进一步化成行最简形矩阵,写出 通解,10 线性方程组的解法,定理,11 初等矩阵与初等变换的关系,定理,推论,一、求矩阵的秩,二、求解线性方程组,三、求逆矩阵的初等变换法,四、解矩阵方程的初等变换法,典 型 例 题,求矩阵的秩有下列基本方法,()计算矩阵的各阶子式,从阶数最高的 子式开始,找到不等于零的子式中阶数最大的一 个子式,则这个子式的阶数就是矩阵的秩,一、求矩阵的秩,()用初等变换即用矩阵的初等行(或 列)变换,把所给矩阵化为阶梯形矩阵,由于阶 梯形矩阵的秩就是其非零行(或列)的个数,而 初等变换不改变矩阵的秩,所以化得的阶梯形矩 阵中非零行(或列)的个数就是原矩阵的秩,第一种方法当矩阵的行数与列数较高时,计 算量很大,第二种方法则较为简单实用,例 求下列矩阵的秩,解 对 施行初等行变换化为阶梯形矩阵,注意 在求矩阵的秩时,初等行、列变换可 以同时兼用,但一般多用初等行变换把矩阵化成 阶梯形,当方程的个数与未知数的个数不相同时,一 般用初等行变换求方程的解,当方程的个数与未知数的个数相同时,求线 性方程组的解,一般都有两种方法:初等行变换 法和克莱姆法则,二、求解线性方程组,例 求非齐次线性方程组的通解,解 对方程组的增广矩阵 进行初等行变换,使 其成为行最简单形,由此可知 ,而方程组(1)中未知 量的个数是 ,故有一个自由未知量.,例 当 取何值时,下述齐次线性方程组有非 零解,并且求出它的通解,解法一 系数矩阵 的行列式为,从而得到方 程组的通解,解法二 用初等行变换把系数矩阵 化为阶梯形,三、求逆矩阵的初等变换法,例 求下述矩阵的逆矩阵,解,注意 用初等行变换求逆矩阵时,必须始终 用行变换,其间不能作任何列变换同样地,用 初等列变换求逆矩阵时,必须始终用列变换,其 间不能作任何行变换,四、解矩阵方程的初等变换法,或者,例,解,第三章 测试题,一、填空题(每小题4分,共24分),1若 元线性方程组有解,且其系数矩阵的秩为 ,则当 时,方程组有唯一解;当 时,方 程组有无穷多解,2齐次线性方程组,只有零解,则 应满足的条件是 ,4线性方程组,有解的充要条件是,二、计算题,(第1题每小题8分,共16分;第2题每 小题9分,共18分;第3题12分),2求解下列线性方程组,有唯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 末日来无迹后会永无期…… 中英互译
- 民政知识、行政法规及社会综合常识试卷真题及答案
- 河南省孟州市2025年上半年事业单位公开遴选试题含答案分析
- 河北省魏县2025年上半年事业单位公开遴选试题含答案分析
- 河北省饶阳县2025年上半年事业单位公开遴选试题含答案分析
- 河北省涞水县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度城市观光旅游包车运营管理合同
- 2025版山西拓扬人力资源有限责任公司企业人才招聘与选拔服务合同
- 2025版生产车间安全设施承包协议
- 2025版架子工劳务分包合同范本(含安全协议)
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 全过程工程咨询投标方案(技术方案)
- (高清版)DZT 0388-2021 矿区地下水监测规范
- 胰腺肿瘤影像学课件
- 夹芯彩钢复合板吊顶施工方案
- 高效课堂讲座课件
- 双高专业群电子商务专业群申报书
- 有害物质污染源识别与评价表
- 餐具洗消保洁制度管理办法
- 齿轮的设计计算PPT学习教案
评论
0/150
提交评论