![[五年级数学]五年级数学思维训练.doc_第1页](http://file.renrendoc.com/FileRoot1/2019-1/19/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e1.gif)
![[五年级数学]五年级数学思维训练.doc_第2页](http://file.renrendoc.com/FileRoot1/2019-1/19/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e2.gif)
![[五年级数学]五年级数学思维训练.doc_第3页](http://file.renrendoc.com/FileRoot1/2019-1/19/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e3.gif)
![[五年级数学]五年级数学思维训练.doc_第4页](http://file.renrendoc.com/FileRoot1/2019-1/19/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e4.gif)
![[五年级数学]五年级数学思维训练.doc_第5页](http://file.renrendoc.com/FileRoot1/2019-1/19/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e/29367ba7-c5dd-4c74-bf68-8ffc8416ca5e5.gif)
已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
央子街道央子小学数学校本课程开发案例五年级上学期数学思维训练一、 速算与巧算(一)课题:速算与巧算(一)适用年级:五年级奥数在线速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。求这10名同学的总分。分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到总和=8010(6-2-3311-6+12-11+4-5)8009809。实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上8010,就可口算出结果为809。例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到:总和数=基准数加数的个数+累计差,平均数=基准数+累计差加数的个数。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。解:选基准数为450,则累计差=123073023211811251150,平均每块产量=4505010455(千克)。答:平均每块麦田的产量为455千克。求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7749(七七四十九)。对于两位数的平方,大多数同学只是背熟了1020的平方,而2199的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。例3 求292和822的值。 解:292=2929(291)(29-1)1230281840+1841。8228282(822)(822)22808446720+46724。由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。例4 求9932和20042的值。解:9932=993993 (9937)(993-7)+7210009864998600049986049。20042=20042004(2004-4)(2004+4)4220002008164016000164016016。下面,我们介绍一类特殊情况的乘法的速算方法。请看下面的算式:6646,7388,1944。这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。例5 8864?8864(808)(604)(808)60(808)480608608048480608068048480(6064)8480(6010)848(61)100+84。于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为84;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8(61)。例6 7791?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7107。用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。练习61.求下面10个数的总和:165,152,168,171,148,156,169,161,157,149。2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):26,25,25,23,27,28,26,24,29,27,27,25。求这批麦苗的平均高度。3.某车间有9个工人加工零件,他们加工零件的个数分别为:68,91,84,75,78,81,83,72,79。他们共加工了多少个零件?4.计算:131610+1117121512161312。5.计算下列各题:(1)372; (2)532; (3)912 (4)1082 6.计算下列各题:(1)7728 (2)6655 (3)3319二、速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:52=10254=1001258=1000例1 计算123425 125282554解:式=123(425)=12310012300式=(1258)(254)(52)=100010010=10000002.分解因数,凑整先乘。例 2计算 2425 56125 1255325解:式=6(425)=6100=600式=78125=7(8125)=71000=7000式=1255485=(1258)(554)=1000100=1000003.应用乘法分配律。例3 计算 17534175666712+67356752+6解:式=175(34+66)=175100=17500式=67(1235521) 671006700(原式中最后一项67可看成 671)例4 计算 123101 12399解:式=123(1001)=12310012312300123=12423式=123(100-1)=12300-123=121774.几种特殊因数的巧算。例5 一个数10,数后添0;一个数100,数后添00;一个数1000,数后添000;以此类推。如:1510=15015100=150015100015000例6 一个数9,数后添0,再减此数;一个数99,数后添00,再减此数;一个数999,数后添000,再减此数; 以此类推。如:129120-12108129912001211881299912000-12=11988例7 一个偶数乘以5,可以除以2添上0。如:6530165801165=580。例8 一个数乘以11,“两头一拉,中间相加”。如 2222112444224561127016例9 一个偶数乘以15,“加半添0”.2415(24+12)10360因为2415 24(10+5)24(10102)=2410+24102(乘法分配律)2410+24210(带符号搬家)(24+242)10(乘法分配律)例10 个位为5的两位数的自乘:十位数字(十位数字加1)100+25如1515=1(1+1)100+25=2252525=2(2+1)100+25=6253535=3(3+1)100+25=12254545=4(4+1)100+25=20255555=5(5+1)100+25=302565656(6+1)100+25=42257575=7(7+1)100+2556258585=8(8+1)100+25=722595959(9+1)100259025还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看算得快一书。二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。例11 计算1105330025 44000125解:1105=(1102)(52)22010=22330025(33004)(25444000125=(440008)(1258)35200010003522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。例12 86427548645427=1627=4323.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。例13 13959 215-65209024-4822418712-6312-5212解:139+59=(135)9=1892215-65(21-6)5155=3209024-48224(2090-482)241608246718712-6312-5212(187-63-52)127212=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。即a(bc)=abc 从左往右看是去括号,a(bc)abc 从右往左看是添括号。a(bc)abc例14 1320500250400012585600(286)372162542997729(8181)解: 13205002501320(500250)=132022640400012584000(1258)4000100045600(286)=5600286=2006=120037216254=372(16254)37231242997729(8181)29977298181(299781)(72981)379333三、高斯求和四、数的整除性(一)五、弃九法六、数的整除性(二)七、找规律(一)八、找规律(二)九、找规
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质控手册分级管理制度
- 质量服务过程管理制度
- 空调电销制度管理制度
- 直播卖货渠道管理制度
- 职业培训卫生管理制度
- 幼儿园环比管理制度
- 租赁车辆采购管理制度
- 工厂消杀间管理制度
- ktc员工管理制度
- 安全巡查员管理制度
- 2025山东菏泽事业单位招聘易考易错模拟试题(共500题)试卷后附参考答案
- 世界现代设计史(总结)
- 工地试验室安全培训内容
- 医疗设备维保服务项目组织机构及人员配备
- 射频同轴连接器设计理论基础
- 广东省高速公路工程地质勘察技术规程(2024 版)
- 2024年内蒙古自治区包头市公开招聘警务辅助人员(辅警)笔试高频必刷题试卷含答案
- 耳尖放血医学课件
- 公司绿色可持续发展规划报告
- 2024年4月份弱电施工日志
- 【MOOC】设计的力量-湖南大学 中国大学慕课MOOC答案
评论
0/150
提交评论