浅谈盈亏问题解题思路.doc_第1页
浅谈盈亏问题解题思路.doc_第2页
浅谈盈亏问题解题思路.doc_第3页
浅谈盈亏问题解题思路.doc_第4页
浅谈盈亏问题解题思路.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辅导孩子做奥数题目的时候,经常发现孩子对老师讲解过的基本典型的几类奥数题基本会做,可遇到复杂一点的题就抓耳挠腮,束手无策了。经过多次试探、沟通,我发现孩子对老师讲过的诸如盈亏问题、鸡兔同笼等几类基本典型问题都能够熟练应用公式解答,但其实并没有完全吃透基本典型题目的解题思路的精髓,特别是对基本典型问题的前置基础要求条件几乎没有概念,这也就导致孩子不知道何种情况不能直接套用公式,或者也知道不能直接套用公式,但却无从下手的情况。个人觉得引导孩子真正理解基本典型问题的解题思路,分析和掌握基本典型问题的前置基础要求,并在此基础上引导孩子判断一道题是否满足前置基础要求,在不满足前置基础要求的情况下,如何有针对性的进行转化,才能做到有的放矢。下面就以盈亏问题为例,和大家探讨一下:基本典型问题:老师把一包饼干分给小朋友,如果每人分5块,将剩余14块;每人分7块,又缺少4块。那么,小朋友共有多少人?一共有多少块饼干?这是盈亏问题的基本典型例题。引导孩子思考:每个小朋友分5块后,老师手上还有14块。根据题中“每人分7块,又缺少4块”,也就是说,再补给老师4块饼干,每个人就可以分得7块了。那好,再补给老师4块,老师手上则有前面剩余的14块和后补的4块,一共有14+4=18块饼干。把这18块饼干也都分给小朋友,每个小朋友就正好有7块饼干了。现在每个小朋友都已经有了上次分的5块饼干,再分得7-5=2块饼干,每人就有7块饼干了。也就是说老师手上的18块饼干正好可以再给每个小朋友2块饼干。这样就容易理解,小朋友一共有182=9个小朋友。得出小朋友的人数,当然就很容易求得原来的饼干数量了。通过这种理解方式,相信孩子能够很容易掌握盈亏基本典型问题的思考方法,而不是简单的记忆那些解题公式了。当然,盈盈、亏亏问题都能按此理解和解答,在此就不赘述了。盈亏基本典型问题解题思路的关键是两次分配的份额差异与盈亏差异的相互关系。两次分配的盈亏差正是因为两次平均分配的份额差所导致的,而两次分配的份数又不发生变化,因此盈亏差就是份额差与份数的乘积。这是盈亏问题解题思路的本质。(孩子如果一时难以完全理解这个本质,也不要强求)在此基础上,我们再来分析一下基本典型盈亏问题的前置基础要求:1. 先后两次对同一物品(饼干)进行不同的平均分配;2. 前后两次分配饼干过程中小朋友的人数是固定不变的,也就是分配的份数不变;饼干的原有数量,也就是在两次分配中基数固定不变;3. 两次分配中每人分得的饼干数量,以及两次分配中老师手上剩余或缺少的饼干数量可以变化,也就是每份的数量和每次分配的盈亏数额可以变化,我们也正是根据这两个数额的变化情况求得最后的份数和分配基数的。这些前置基础要求是我们能否应用上述解题思路来解答这类题型的基础条件,如果不满足这些基础条件,就不能直接使用基本典型题的解答思路来解答。从另一角度来说,遇到不满足上述前置基础要求的类似题目,就要设法将其转换到满足前置基础要求后,才能再应用基本典型题的解答思路来解答。老师和课本上都说,要善于将复杂的盈亏问题转化为基本典型的盈亏问题,可是具体怎么转化,孩子还是无从下手。现在,我们分析了上述前置基础要求,至少我们可以明确,就是要把不符合上述前置基础要求的条件转化为符合前置基础要求的条件。在条件转换的过程中,要抓住前置条件中固定的要求和可以变化的条件之间的关系,具体到盈亏问题中,由于每份的数量和每次分配的盈亏数量是可以变化的,我们一般也就考虑将需要固定的条件进行固定,并根据有关题目条件将此变化转换为可以变化的盈亏数值的变化。例题1:一群小朋友分橘子,如果其中两人每人分4个,其余每人分2个,则多出4个;如果其中一人分6个,其余每人分4个,则又缺12个。问一共有多少小朋友?多少橘子?分析:本题中橘子和小朋友的数量在两次分配中都没有变化,但是两次分配都不是平均分配,这就不满足前面分析的前置基础要求,当然也不能直接应用盈亏基本典型问题的解题思路直接解答。因此,我们的解题思路就是要先将不平均分配的条件转化为平均分配的条件,以满足相应的前置基础要求。第一次分配中“两个人分4个,其余每人分2个,则多出4个”,我们让这两个分得4个的小朋友每人还两个给老师(虽然这题中没提及老师,我们还是假设一个老师来分,这样更好描述,孩子也更好理解),让这两个与众不同的小朋友和其他小朋友一样。这样就成了每人分2个的平均分配了。这样一来,老师手上就会又多出22=4个,加上原分配中多出的4个,那么,第一次分配就变成了“每人分2个,则多出8个”。同样,第二次分配中“其中一人分6个,其余每人分4个,则又缺12个”,让这一个分6个的小朋友还2个给老师,这样老师由原来缺12个就变成了缺10个。那么,第二次分配就变成了“每人分4个,则缺10个”。通过上述过程我们可以看出,通过可以变化的盈亏数量的转换,将不符合的前置基础要求的条件转化为符合前置基础要求的条件,这就是解决类似问题的总体思路。经过这样的转换,题目已经成为满足前提条件的基本典型盈亏题目了。具体解答就不详述了。例题2:钢笔和圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱?分析:这题显然不满足前置基础要求中“对同一物品进行两次分配”的要求,所以我们要努力将其转换为对同一物品的分配。抓住“钢笔和圆珠笔每支相差1元2角”的条件,将“买5支钢笔”转换为“买5支圆珠笔”就会多1.25=6元,这样“买5支钢笔差1元5角”的条件就转化为“买5支圆珠笔多4元5角”。题目于是变成了“买5支圆珠笔多4元5角,买8支圆珠笔多6角”。这又是符合前置基础要求的基本典型题型了。当然,也可以将圆珠笔转换为钢笔来做。 例题3:一个富翁向一些乞丐施舍一批钱财,一开始准备给每个乞丐100元,结果剩下350元。于是他决定每人再多给20元。这时从其他地方又赶来5名乞丐,如果他们每人拿到的钱和其他乞丐一样多,富翁还需要再增加550元。富翁原打算施舍多少钱?分析:这个题目中,两次分配的乞丐数量发生了变化,也就不能够满足基本典型题型中两次分配份数固定不变的前置基础要求了。为此,我们需要对乞丐人数进行固定转化。在这里,请这后赶来的5名乞丐先不参与分配,也就是将每人获得了120元,共计1205=600元还给富翁。这样,富翁就不需要增加550元,而且还剩下50元了。于是,题目就变成了“给每个乞丐100元,结果剩下350元;给每个乞丐120元,结果剩下50元”。 例题4:某班同学去划船,如果增加1条船,那么每条船正好坐6人;如果减少1条船,那么每条船要坐9人。问学生有多少人?分析:这题首先要理清楚什么是基本典型例题中的饼干(待分配的物品)?什么是小朋友(待分配的份数)?本题中,同学数量对应“饼干数量”(待分配的物品),“船”则对应“小朋友”(待分配的份数)。由此,可以知道与上题一样,两次分配的份数(船的数量)不固定,当然也就不满足基本典型题型的前置基础要求。转换的思路当然还是将其固定。根据“如果增加1条船,那么每条船正好坐6人”,为保持船的数量不变,将增加的1条船退回,这样就有6个人无船可坐,也就是“每条船坐6人,则多6人”;同样,根据“如果减少1条船,那么每条船要坐9人”,可转换为“每条船坐9人,则缺9人”。经过这样的转换,本题就变成了“每条船坐6人,则多6人;每条船坐9人,则缺9人”的基本典型盈亏题型了。例题4:小明每天7:23从家出发去学校,若以每分钟60米的速度,小明会提前2分钟到校;若以每分钟50米的速度,小明会迟到1分钟。问小明的学校几点上课?分析:这道题看上去比较复杂,需要引导孩子抽丝剥茧,一步步理清思路。首先,这也是一道类似盈亏问题,小明家与学校的距离是待分配的物品,小明路途上所用时间可看做分配的份数。我们前面分析过,分配的份数应固定不变,而小明两次不同速度所用的时间是不同的。这就需要转换。而且,这题的盈亏数量在哪呢?其实,这题可将出发的时间到上课时间的这段时间段看做分配的份数,固定小明走路的时间,也就是固定分配份数。这样,提前两分钟到校,我们就算他再走两分钟,也就是转换为“以每分钟60米的速度,多走120米”。同样,迟到1分钟,也就转换为“以每分钟50米的速度,少走50米”。这样,这题转换成了一个基本典型盈亏问题。我们可以求得家到学校的距离为900米,出发时间到上课时间为17分钟。再根据小明出发时间7:23,得出学校上课时间为7:40.例题5:总而言之,解题总体思路是:1. 分析题目的基础类型。2. 分析题目是否满足该基础类型的前置基础要求。如果满足,直接按该类典型题目分析方法计算。3. 如果不满足该基础类型的前置基础要求,应当先假设其为满足前置基础要求的情况,并利用题目给定的相关条件,将假设转化为前置基础

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论