




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1、设,当时,( )(A)比高阶的无穷小 (B)比低阶的无穷小(C)与同阶但不等价的无穷小 (D)与是等价无穷小【答案】(C)【考点】同阶无穷小【难易度】【详解】,即当时,即与同阶但不等价的无穷小,故选(C).2、已知由方程确定,则( ) (A)2 (B)1 (C)-1 (D)-2【答案】(A)【考点】导数的概念;隐函数的导数【难易度】【详解】当时,.方程两边同时对求导,得将,代入计算,得 所以,选(A).3、设,则( )(A)为的跳跃间断点 (B)为的可去间断点(C)在处连续不可导 (D)在处可导【答案】(C)【考点】初等函数的连续性;导数的概念【难易度】【详解】,在处连续.,故在处不可导.选(C).4、设函数,若反常积分收敛,则( )(A) (B) (C) (D)【答案】(D)【考点】无穷限的反常积分【难易度】【详解】由收敛可知,与均收敛.,是瑕点,因为收敛,所以,要使其收敛,则所以,选D.5、设,其中函数可微,则( )(A) (B) (C) (D)【答案】(A)【考点】多元函数的偏导数【难易度】【详解】,故选(A).6、设是圆域位于第象限的部分,记,则( )(A) (B) (C) (D)【答案】(B)【考点】二重积分的性质;二重积分的计算【难易度】【详解】根据对称性可知,.(),()因此,选B.7、设A、B、C均为n阶矩阵,若AB=C,且B可逆,则( )(A)矩阵C的行向量组与矩阵A的行向量组等价(B)矩阵C的列向量组与矩阵A的列向量组等价(C)矩阵C的行向量组与矩阵B的行向量组等价(D)矩阵C的列向量组与矩阵B的列向量组等价【答案】(B)【考点】等价向量组【难易度】【详解】将矩阵、按列分块,由于,故即即C的列向量组可由A的列向量组线性表示.由于B可逆,故,A的列向量组可由C的列向量组线性表示,故选(B).8、矩阵与相似的充分必要条件是( )(A)(B)为任意常数(C)(D) 为任意常数【答案】(B)【考点】矩阵可相似对角化的充分必要条件【难易度】【详解】题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由的特征值为2,0可知,矩阵的特征值也是2,0.因此,将代入可知,矩阵的特征值为2,0.此时,两矩阵相似,与的取值无关,故选(B).二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9、 .【答案】【考点】两个重要极限【难易度】【详解】其中,故原式=10、设函数,则的反函数在处的导数 .【答案】【考点】反函数的求导法则;积分上限的函数及其导数【难易度】【详解】由题意可知,.11、设封闭曲线的极坐标方程方程为,则所围平面图形的面积是 .【答案】【考点】定积分的几何应用平面图形的面积【难易度】【详解】面积12、曲线上对应于点处的法线方程为 .【答案】【考点】由参数方程所确定的函数的导数【难易度】【详解】由题意可知,故曲线对应于点处的法线斜率为.当时,.法线方程为,即.13、已知,是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件,的解为 .【答案】【考点】简单的二阶常系数非齐次线性微分方程【难易度】【详解】,是对应齐次微分方程的解.由分析知,是非齐次微分方程的特解.故原方程的通解为,为任意常数.由,可得 ,.通解为.14、设是3阶非零矩阵,为A的行列式,为的代数余子式,若,则 .【答案】-1【考点】伴随矩阵【难易度】【详解】等式两边取行列式得或当时,(与已知矛盾)所以.三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)当时,与为等价无穷小,求和的值.【考点】等价无穷小;洛必达法则【难易度】【详解】故,即时,上式极限存在.当时,由题意得16、(本题满分10分)设D是由曲线,直线及轴所围成的平面图形,分别是D绕x轴,y轴旋转一周所得旋转体的体积,若,求的值.【考点】旋转体的体积【难易度】【详解】根据题意,.因,故.17、(本题满分10分)设平面区域D由直线,围成,求 【考点】利用直角坐标计算二重积分【难易度】【详解】根据题意 ,故18、(本题满分10分)设奇函数在上具有二阶导数,且,证明:()存在,使得;()存在,使得.【考点】罗尔定理【难易度】【详解】()由于在上为奇函数,故令,则在上连续,在上可导,且,.由罗尔定理,存在,使得,即.()考虑令,由于是奇函数,所以是偶函数,由()的结论可知,.由罗尔定理可知,存在,使得,即.19、(本题满分10分)求曲线上的点到坐标原点的最长距离和最短距离.【考点】拉格朗日乘数法【难易度】【详解】设为曲线上一点,该点到坐标原点的距离为构造拉格朗日函数 由 得 点到原点的距离为,然后考虑边界点,即,它们到原点的距离都是1.因此,曲线上点到坐标原点的最长距离为,最短距离为1. 20、(本题满分11分)设函数()求的最小值;()设数列满足,证明存在,并求此极限.【考点】函数的极值;单调有界准则【难易度】【详解】()由题意,令,得唯一驻点当时,;当时,.所以是的极小值点,即最小值点,最小值为.()由()知,又由已知,可知,即故数列单调递增.又由,故,所以数列有上界.所以存在,设为A.在两边取极限得 在两边取极限得 所以即.21、(本题满分11分)设曲线的方程为满足()求的弧长;()设D是由曲线,直线,及x轴所围平面图形,求D的形心的横坐标.【考点】定积分的几何应用平面曲线的弧长;定积分的物理应用形心【难易度】【详解】()设弧长为,由弧长的计算公式,得()由形心的计算公式,得.22、(本题满分11分)设,当为何值时,存在矩阵C使得,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件【难易度】【详解】由题意可知矩阵C为2阶矩阵,故可设.由可得 整理后可得方程组 由于矩阵C存在,故方程组有解.对的增广矩阵进行初等行变换:方程组有解,故,即,.当,时,增广矩阵变为为自由变量,令,代入相应齐次方程组,得令,代入相应齐次方程组,得故,令,得特解方程组的通解为(为任意常数)所以.23、(本题满分11分)设二次型,记,()证明二次型f对应的矩阵为;()若正交且均为单位向量,证明f在正交变换下的标准形为【考点】二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋合同范本简约模板
- 购房合同范本卖方有利
- 缴纳人防费合同范本
- 舞蹈服装合同范本
- 直播团队合作合同范本
- 小区车位转让合同范本
- 闪银借款合同范本
- 设备清理保洁合同范本
- 阳逻租房合同范本
- 安全检查合同
- 高中语文课程标准测试题答案
- 孕期健康方式课件
- 膏药生产现场管理制度
- 智人迁徙路径重构-洞察及研究
- 关于医院“十五五”发展规划(2026-2030)
- T/SHPTA 082-2024光伏组件封装用共挤EPE胶膜
- T/CCSAS 023-2022危险化学品企业紧急切断阀设置和使用规范
- 农庄鱼塘出租合同范本
- 城管执法理论知识培训课件讲义
- 河南郑州航空港发展投资集团有限公司招聘笔试真题2024
- 高中语文课程标准深度解读
评论
0/150
提交评论