基于有限元分析的轿车铝合金车轮设计_第1页
基于有限元分析的轿车铝合金车轮设计_第2页
基于有限元分析的轿车铝合金车轮设计_第3页
基于有限元分析的轿车铝合金车轮设计_第4页
基于有限元分析的轿车铝合金车轮设计_第5页
已阅读5页,还剩82页未读 继续免费阅读

基于有限元分析的轿车铝合金车轮设计.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘 要轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。在研究了重进行了了应用先使用软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。利用短设计周期、减少开发成本。该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析is of s as of is an At to do as a on of is of AD E of E to of 005 s in is is of AE to of to of 摘 要.课题研究的目的意义.铝合金车轮行业现状及发展趋势.国内外研究方法.主要研究内容. 软件基础.车轮模型的建立.类及装配.轮三维模型建立过程. 本章小结. 章车轮强度静态分析. . 与.车轮几何模型的简化. .边界条件的处理.载荷的处理.车轮弯曲疲劳试验有限元模型.静力分析结果及数据分析.本章小结. 章车轮的模态分析. 模态分析定义. 模态分析的步骤. 结果分析.考虑速度影响的自由振动计算结果.考虑速度影响的约束振动计算结果. 本章小结.车轮结构改进.车轮改进后的前后对比.本章小结.课题研究的目的意义实现汽车轻量化,提高燃油经济性,是汽车节能的最有效途径之一。汽车减轻自重,不仅可减小汽车的行驶阻力,降低油耗,还有利于改善汽车的转向、加速、制动等性能,有利于降低噪声、减轻振动,为实现大功率创造条件。同时轻量化带来的低油耗,使汽车的废气排放减少,对环境的污染程度也减小。汽车轻量化有两大途径:一是采用轻量化材料,例如采用超高强度钢板,铝合金、镁合金等轻质材料代替传统的钢铁材料;一是优化、更改汽车的结构,缩小零部件尺寸,最大限度地减轻零部件的质量。全球汽车工业越来越注重汽车的轻量化,表现在铝及其合金在汽车材料中所占的比重越来越大。铝的比重是铁的1/3,具有良好的导热、导电性能,其表面自然形成的氧化膜具有良好的耐蚀性;铝的铸造工业性能也比较好,可以获得薄壁复杂铸件。现代轿车日益广泛使用铝材,已经成为一种趋势,例如轿车轮圈就是一个最明显的例子,80年代初,大部分轿车还是使用钢质轮圈,而今绝大部分轿车都是用铝合金轮圈了。本课题借助,有限元分析软件保证强度和可靠性的前提下,对车轮进行优化,以进一步减少车轮质量,降低成本。制车轮在车轮制造业中占主导地位,随着科学技术的发展与进步,对车辆安全、环保、节能的要求日趋严格,铝合金车轮以其美观、质轻、节能、散热好、耐腐蚀、加工性能好等特点,逐步取代钢制车轮。铝合金车轮的出现到如今渐渐替代钢制车轮是一个漫长的发展阶段。在20世纪初,一些热衷于赛车的爱好者,为了能使车辆更轻以提高赛车速度,想方设法对车辆各零部件作轻量化的改进,其中车轮是重点减轻的主要对象。1923年,世纪30年代联邦德国汽车联合会、拜尔(动机公司及戴姆勒一奔驰汽车公司,正式将钢制辐条式轮毂与铝制扎制轮辋相结合的车轮装上汽车,为铝合金车轮的发展奠定了基础。二次世界大战和世界性的能源危机大大刺激了汽车商的轻量化需求。1945年汽车厂商纷纷开展批量生产铝合金车轮的研究,重要集中在铝合金车轮的材质和成形工艺方面,但由于车轮的特殊安全要求,仍未能实施批量生产。直至20世纪50年代末,联邦德国还只能少量地生产铝合金车轮。1970年末,拜尔发动机公司率先将铸造铝合金车轮作为特殊部件装到了2002型轿车上,1972年又在双门小轿车上成批装上了铸造铝合金车轮,开始了铸造铝合金车轮批量用于轿车的新局面。日本铝合金车轮工业是在1970年后至1984年之间快速发展起来的,在1984年的年产量达640万件。意大利在1979年曾生产150万件。到1980年,西欧共生产700多万件铝合金车轮(其中50%是铸造铝合金车轮),并以年产6%7%的速度递增。1988年,美国生产的车辆中,铝合金车轮已作为好几种车型的系列部件,用汽车公司生产的年,福特公司在把铝合金车轮定为公司系列的标准件。20世纪80年代初,美国原装轿车铝合金车轮装车率大约4%一5%,如今已超过40%。而日本目前轿车铝合金车轮装车率超过45%,欧洲国家超过50%。我国铝合金车轮工业起步较晚,最早使用铝合金车轮是在20世纪80年代初,国营洪都机械厂将砂型铸造的铝合金车轮装在边三轮摩托车上,但是数量很少,未形成气候。到加世纪80年代末,我国出现了第一个具有现代规模的戴卡轮毂制造有限公司,其规模和设备都进入了世界先进行列。加世纪90年代初,在广东出现了既生产汽车,又生产摩托车铝合金车轮的南海中南铝合金轮毂有限公司,这两个生产厂的生产设备都已达到国际水平。但这段时期,因国内汽车和摩托车对铝合金车轮的装车欲望还很低,钢圈仍占据着绝对统治市场的地位。随着我国公路设施的飞速发展,这两个企业也分别在汽车、摩托车行业中积极地宣传,铝合金车轮开始以极其迅猛之势在全国得到推广,生产铝合金车轮的工厂也像雨后春笋般出现,蔓延至全国。2002年,我国轿车的铝合金车轮装车率已接近45%;摩托车的铝合金车轮装车率已逾50%。综上所述,不难看出,铝合金车轮是现代车辆轻量化、高速化、现代化的必然产物。车的高速化迫使车轮朝“三化”(扁平化、子午线化、无内胎化)迅猛发展。国外轿车车轮己日趋大直径、宽轮辋发展的格局,原来多见的1213逐步被淘汰的趋势,目前主流是15逐步朝1719至己出现2026小直径车轮与轮胎组合更显现代、霸气和时髦。由于直径大、轮辋宽,使轮胎与地面的接触面积更大,从而增加了汽车与地面的附着力,使汽车的操纵性能更好,提高了汽车的安全性。但是大直径、宽轮辋也会产生使轮胎磨损加快的不利影响。结构方面,基本上以整体铸造的铝合金车轮为主,除特殊场合装用二片式和三片式的复合车轮,如为了减小车轮质量,提高强度,采用锻造钢轮辋和铸造铝合金轮辐组装式工艺生产的车轮;或为了降低车轮噪声,提高汽车操纵稳定性在轮辐和轮辋之间加上特殊橡胶结合件等。外观方面,作为象征整车档次之一的车轮外观,在点缀整车的时尚化作用中越来越向着艺术化方向发展,多变的车轮轮辐形态和迷人的色泽越来越为人们所关注。车轮由单调的辐条式、辐板式向着带空间曲面和弧形面状态,甚至由中心对称演变成中心不对称的图案,另外对车轮与整车的匹配和色泽的协调、表面处理(全涂亚光色、抛光轮、电镀轮、真空镀膜轮等)要求也日益提高。材料方面,有向镁合金车轮发展的趋势,许多学者正研究使镁合金能适应大量生产的工艺和设备。镁具有质量轻(铝的2/3,铁的1/4)、比强度大、尺寸稳定、抗变形、机械加工性能好、吸收振动性能好的特点,有利于提高整车运行速度,降低能耗,承受较高冲击载荷,此外镁在地球上储量相当丰富,占金属的第8位,还可以从海水中无限量地提取,综合来说镁能在各方面很好的满足人类各方面的要求。但是这类铸件的试验条件非常严格和气密性要求高,成品率低,生产成本高。此外,有人在不断探索降低半凝固铸造温度的新材料途径,甚至已有人在尝试镶嵌式的中空复合轮(即在车轮中衬嵌一种高强度的轻质骨材,让铝液填充时将骨材全部包住),来进一步提高轻量化效果,而且可获得比铝合金车轮更佳的比强度和弹性模量。90年代,许多新的概念如遗传算法、形状优化、拓扑优化等被应用到结构优化过程中,其中利用有限元方法进行优化分析是一种常规的选择。因为它不仅能处理大范围的结构类型,而且它在可选择的分析类型中是一种可利用的最通用的方法。它不只限于结构问题,也能应用到能用偏微分方程表示的任何问题中。结构优化研究历程中,出现过以直觉的满应力为设计准则的准则法和以数学规划为理论支柱的规划法。这两种方法互相融合,演变成序列近似概念和相应的序列近似规划法,在结构尺寸优化中获得很大的成功,序列二次规划就是这样一种重要方法,许多通用的结构优化软件也以此方法为基础。我国结构优化设计的研究和应用在80年代中后期发展起来,迄今已取得一定的成绩,部分高等院校和科研院所根据不同的条件和需要,自主开发了一批通用的结构优化软件和专用软件。例如大连理工大学、北京农业工程大学及北京航空航天大学等单位开发的多单元、多工况、多约束结构优化程序算机辅助结构优化程序系统些系统适用于汽车及其零部件、飞机部件、火车部件等结构的优化设计。近年来由于汽车工业的迅猛发展,对汽车各零部件的优化成为研究的热点,如车身、车架、车轴、发动机活塞、制动器等结构的优化。国内对车轮结构优化方面的研究尚少,东风汽车有限公司的翁运忠、轧制技术及连轧自动化国家重点实验室的崔青玲等人对车车轮结构优化设计进行了初步研究,他们运用有限元软件尔滨工业大学的崔胜民、杨占春采用独立的优化程序和有限元程序分别进行车轮形状优化设计和仿真分析。他们在优化程序中建立起车轮优化的数学模型,以控制辐板形状的弧段半径、弧段圆心角等参数为设计参数,以辐板弧面长度最小为优化目标并进行优化,把优化结果通过接口程序输入有限元程序中进行网格的重新划分和应力分析计算。通过优化前后有限元分析结果比较,优化后结构受力情况有了明显的改善。完成车轮结构强度分析前在们以轮辋和轮辐的厚度为设计变量,以结构总体质量最轻为优化目标进行优化。结果表明优化后结构应力接近于材料的强度极限,材料性能得到充分利用,结构重量有所降低。研究车轮冲击试验工况下结构的优化,他以关键节点的位移量为设计变量,通过给定设计变量的变化范围及变化步长,分别进行计算,观察结构应力随设计变量变化而变化的情况,利用分析结果指导设计,保证车轮结构的安全性 1 。运用有限元法对车轮弯曲疲劳试验进行仿真分析和车轮的模态分析,研究车轮结构在螺栓预紧力、弯矩及离心力作用下结构受力情况和车轮自由振动和约束振动的固有频率,具体内容如下:(1)用2)对车轮结构弯曲疲劳试验的进行静力分析,研究试验工况下车轮结构应力分布规律及螺栓预紧力、旋转离心力和试验弯矩三种载荷对车轮结构强度的影响。(3)对车轮进行模态分析,分析车轮的固有频率,研究车轮的是否与发动机产生共振。(4)改进车轮的三维模型,对改进后车轮进行静力分析和模态分析,并与改进前的车轮模型进行对比。软件基础下的参数化技术的最早应用者,在目前的三维造型软件领域中占有着重要地位,现今主流的别是在国内产品设计领域占据重要位置。第一个提出了参数化设计的概念,并且采用了单一数据库来解决特征的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。1 参数化设计,相对于产品而言,我们可以把它看成几何模型,而无论多么复杂的几何模型,都可以分解成有限数量的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。2 基于特征建模是基于特征的实体模型化系统,工程设计人员采用具有智能特性的基于特征的功能去生成模型,如腔、壳、倒角及圆角,您可以随意勾画草图,轻易改变模型。这一功能特性给工程设计者提供了在设计上从未有过的简易和灵活。3 单一数据库(全相关)像一些传统的谓单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。例如,一旦工程详图有改变,控)工具路径也会自动更新;组装工程图如有任何变动,也完全同样反应在整个三维模型上。这种独特的数据结构与工程设计的完整的结合,使得一件产品的设计结合起来。这一优点,使得设计更优化,成品质量更高,产品能更好地推向市场,价格也更便宜 2 。类及装配1、车轮构造车轮与轮胎是汽车行驶系统中的重要部件,通过车轮与轮胎直接与地面接触,在道路上行驶。其主要功用是:支撑整车;缓和由路面传来的冲击力;保证轮胎同路面间良好的附着作用,提高汽车的动力性、制动性和通过性;汽车转弯行驶时产生平衡离心力的侧抗力,在保证汽车正常转向行驶的同时,通过车轮产生的自动回正力矩,使汽车保持直线行驶方向。车轮为固定轮胎内缘、支承轮胎并与轮胎共同承受整车负荷的刚性轮子。车轮通常由轮毂、轮辋以及连接这两元件的轮辐所组成。轮毂通过滚动轴承支承在车桥或转向节轴颈上。轮辋也叫轮圈,用来安装轮胎。轮辐有辐板式和辐条式两种。体式车轮构造 3体式车轮各部分名称 31 轮辋宽度 10 螺栓孔节圆直径2 轮辋名义直径 11 螺栓孔直径3 轮缘 12 轮辐安装面4 胎圈座 13 安装面直径5 凸峰 14 后距6 槽底 15 轮辐7 气门孔 16 轮辋8 偏距 17 轮辋中心线9 中心孔 182、车轮的种类按轮辋和轮辐结合形式的不同,车轮可分为如下结构,其代表型结构如下:(1)整体式:轮辐和轮辋是由一个整体组成的,2)组合式:由2个以上的零件组合而成的车轮,其组成的零件可以分开,按其组合形式可分为三类:两片式车轮:由轮辋和轮辐结合起来的结构,三片式车轮:由两个轮辋零件和一个轮辐结合起来的结构,辐条式车轮:轮辋与中央轮盘部件,通过很多辐条实现连结的车轮结构。片式3、车轮的基本装配知识车轮的有关装配主要有以下的几种装配情况,轮装配关系1 车轮轮辋与轮胎之间的装配2 车轮与装饰钉之间的装配3 车轮与刹车钳之间的装配4 车轮安装面与车轴之间的装配5 车轮螺栓孔与螺母之间的装配6 车轮螺栓孔与车轴之间的装配7 车轮与装饰盖之间的装配8 车轮中心孔与车轴之间的装配9 车轮气门孔与气门嘴之间的装配10 轮三维模型建立过程1、轮辋三维模型的创建轮辋与轮胎结合部分的尺寸由国标(3487定。常见的形式主要有深槽轮辋和平底轮辋,此外,还有对开式轮辋和半深槽轮辋等。本设计采用的轮辋轮廓是5深槽轮辋辋规格为6J15。辋于直径代号1426) 4辋4 单位为毫米轮辋轮廓 A (量规) 1)进入辋轮廓草绘(2)善轮辋轮廓草绘(3)运用旋转命令,旋转建立轮辋三维模型2、轮辐三维模型的创建轮辐的造型要兼顾与轮辋的配合,装车空间,强度,美观等。本设计采用扫描混合建立轮辐的模型。(1)绘扫描轨迹(2)选择扫描混合指令,绘截面b(3)完全扫描混合,成扫描混合(4)选取阵列,阵列建立其他轮辐模型(5)对轮辐进行修饰,建立安装盘,螺栓孔,气门嘴等,章小结本章研究了软件的组成及功能和车轮结构、种类及装配。按照轮辋的国家标准 34872005,根据本设计中车轮的具体型号、参数,运用述了使用软件进行车轮造型设计的具体流程。第 3 体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国能与多数现数据的共享和交换,如I现代产品设计中的高级中包括有限元法(边界元法(有限差法(。每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型。分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如P,5 。与免了用其他方式将击开始所有程序AD 跳出的对话框中择右边的击击出现的对话框中,点击成设置。示接口创建成功。车轮模型导入掉对受力影响不大的装修圆角,槽,气门孔等,以避免计算时间过长。356的材料特性车轮材料为相当于国内的是铝硅镁系列三元合金。铝合金动性高,无热裂倾向,线收缩小,气密性高,适合于车轮如此复杂结构的成型;同时它也具有相当高的耐腐蚀性且可经过热处理强化,合金淬火后有自然时效能力,因而具有较高的强度和塑性,满足车轮高强度和刚度的性能要求。须在保证消除刚体位移的前提下,尽可能使约束符合实际情况。通常建模对象的边界条件是明确的,根据分析对象的几何模型边界条件可以很容易确定其力学的边界位置和边界条件。由车轮动态弯曲疲劳试验设备及其原理图,轮轮缘通过夹具固定在试验旋转台上,而车轮毂部的五个紧固使车轮安装盘与加载轴紧密相连。因此车轮轮缘的三个平移自由度,和两个旋转自由度都受到约束,只允许绕车轮中心轴的转动自由度存在。主要参数如下:最大功率:74大功率转速:6000r/大扭矩:145Nm,整备质量:1305胎规格:195/65辋规格:6J15,偏距:+38,H100。试验中车轮所受到应力有弯曲疲劳试验工况下产生的结构应力和车轮在制造过程(如铸造、机加工、热处理等)中产生的残余应力。车轮铸造中往往会产生疏松、针孔等缺陷,它们在一定程度上影响了材料的属性及其疲劳强度,机加工过程的进刀量和进刀速度等工艺也会在车轮上留下残余应力,热处理过程有着消除残余应力的作用,但是这些残余应力受众多因素影响,难以在有限元仿真中进行定量分析,因此我们只考虑试验工况下车轮结构应力的作用。在动态弯曲疲劳试验工况下,车轮承受载荷来源有三个,轮毂紧固螺栓产生的预紧力、车轮高速旋转时产生的离心力和试验弯矩载荷。这三个载荷可以通过相关的设计参数及试验参数求得。轮的设计参数产品规格 设计载荷 载荷半径R 偏距d 安全系数5 81)试验弯矩车轮所受的弯矩M,其大小由式3 )( (中:轮或汽车制造厂规定的该车轮配用的最大轮胎静负荷半径,单位m;一轮胎与地面之间的设定摩擦系数;偏距为正,外偏矩为负),单位m;位N;课题所研究的车轮参数为: R=0.7,d=38,S=2代人数值可求得: M=1378N2530得出,轮的试验参数产品规格 试验弯矩Nm 试验转速纹扭矩Nm 要求寿命5 1378 1700 110 200000在有限元模型中,载荷是加在加载轴端,加载轴长度L= (加载荷: (得: 螺栓预紧力在试验过程中车轮通过五个螺栓固定。螺栓规格为验要求螺栓扭矩达到110据机械设计原理,普通螺纹力矩: ) 21 (栓轴向载荷:)2 1 vQ d (纹中径 2d : (角: 2 (量摩擦角: (中,普通螺纹的牙型斜角为30,人数值得:3) 离心力试验中,车轮以恒定的转速1700轮结构各点的应力值为上述三个载荷单独作用下的合力,可描述为: )()()( (中 )( 是节点在螺栓预紧力作用下的应力张量, ( 是节点在离心力作用下的应力张量, )( 是节点在单位旋转载荷作用下的应力张量。处理、计算、后处理。前处理主要是建立有限元分析模型,定义元素类型、材料属性、几何属性最后划分网格,形成结构的有限元模型。顶向下及自底向上;采用基于十种图素可以模拟任意复杂的几何形状,强大的布尔运算实现模型的精雕细刻,方便的拖拉、旋转、拷贝、缩放、蒙皮、倒角大大减少了建模时间,辅助工具(如选择、组元、拾取、工作平面、局部坐标系等)为建模提供了极大方便。别对应不同的分析类型与不同的材料。材料属性主要指杨氏模量(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论