八年级数学下册第十九章四边形知识点总结.doc_第1页
八年级数学下册第十九章四边形知识点总结.doc_第2页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第9章 四边形 对边不平行的四边形 一般梯形 梯形 等腰梯形四边形 特殊梯形 直角梯形 矩形 平行四边形 正方形 菱形 一、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 性质:1、对边:分别平行且相等; 2、对角:分别相等; 3、对角线:互相平分; 4、对称性:中心对称图形。判定定理 1、两组对边分别平行的四边形是平行四边形(定义); 2、两组对边分别相等的四边形是平行四边形; 3、一组对边平行且相等的四边形是平行四边形; 4、两组对角分别相等的四边形是平行四边形; 5、对角线互相平分的四边形是平行四边形。 三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。二、矩形定义:有一个角是直角的平行四边形。 性质:1、具有平行四边形的所有性质; 2、四个角都是直角; 3、对角线互相平分且相等; 4、对称性:中心对称图形,轴对称图形。 判定定理: 1.有一个角是直角的平行四边形叫做矩形。2.对角线相等的平行四边形是矩形。3.有三个角是直角的四边形是矩形。直角三角形斜边上的中线等于斜边的一半。三、菱形 定义:邻边相等的平行四边形。性质:1、具有平行四边形的所有性质; 2、四条边都相等; 3、对角线互相垂直,并且每一条对角线平分一组对角; 4、对称性:中心对称图形、轴对称。 判定定理: 1.一组邻边相等的平行四边形是菱形(定义); 2.对角线互相垂直的平行四边形是菱形; 3.四条边相等的四边形是菱形。s菱形=1/2ab(a、b为两条对角线) 四、正方形 定义:一个角是直角的菱形或邻边相等的矩形。性质:1、四条边都相等; 2、四个角都是直角; 3、正方形既是矩形,又是菱形。 判定定理:1、邻边相等的矩形是正方形。 2、有一个角是直角的菱形是正方形。 5、 梯形 定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 1、直角梯形的定义:有一个角是直角的梯形 2、等腰梯形的定义:两腰相等的梯形。 等腰梯形的性质:1、同一底边上的两个角相等; 2、两条对角线相等; 3、两腰相等; 4、对称性:轴对称图形。 等腰梯形判定定理:1、两腰相等的梯形是等腰梯形; 2、同一底上两个角相等的梯形是等腰梯形; 3、对角线相等的梯形是等腰梯形; 解梯形问题常用的辅助线:如图 第十八章勾股定理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a2+b2,则abc是以c为直角的直角三角形(若c2a2+b2,则abc是以c为钝角的钝角三角形;若c2a2+b2,则abc为锐角三角形)。知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。规律方法指导1勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。2勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。3勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。4.勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论