已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019届高三理科数学上学期期末试卷有解析高三数学(理科)试题第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为 ,集合 , ,则 ( )A. B. C. D. 【答案】B【解析】【分析】先化简B,再根据补集、交集的定义即可求出【详解】Ax|0x2,B x|x1,?RBx|x1,A(?RB)x|0x1故选:B【点睛】本题考查了集合的化简与运算问题,是基础题目2.下面是关于复数 的四个命题: ; ; 的虚部为2; 的共轭复数为 .其中真命题为( )A. B. C. D. 【答案】A【解析】【分析】先将复数化简运算,可得|z|及 和共轭复数,再依次判断命题的真假【详解】复数z 2+2i可得|z|2 ,所以p1:|z|2;不正确;z2(2+2i)28i,所以p2:z28i;正确;z2+2iz的虚部为2;可得p3:z的虚部为2;正确;z2+2i的共轭复数为:22i;所以p4:z的共轭复数为22i不正确;故选:A【点睛】本题考查复数的运算法则以及命题的真假的判断与应用,是对基本知识的考查3.已知某产品连续4个月的广告费 (千元)与销售额 (万元)( )满足 , ,若广告费用 和销售额 之间具有线性相关关系,且回归直线方程为 , ,那么广告费用为5千元时,可预测的销售额为( )万元A. 3 B. 3.15 C. 3.5 D. 3.75【答案】D【解析】【分析】求出样本中心点代入回归直线方程,可得a,再将x6代入,即可得出结论【详解】由题意, , ,代入 0.6x+a,可得30.63.75+a,所以a0.75,所以 0.6x+0.75,所以x5时, 0.65+0.753.75,故选:D【点睛】本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键4.已知数列 为等差数列,且 成等比数列,则 的前6项的和为( )A. 15 B. C. 6 D. 3【答案】C【解析】【分析】利用 成等比数列,得到方程2a1+5d2,将其整体代入 an前6项的和公式中即可求出结果【详解】数列 为等差数列,且 成等比数列, ,1, 成等差数列,2 ,2a1+a1+5d,解得2a1+5d2,an前6项的和为 2a1+5d)= 故选:C【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用5.已知定义在 的奇函数 满足 ,当 时, ,则 ( )A. B. 1 C. 0 D. -1【答案】D【解析】【分析】根据题意,分析可得f(x+4)f(x+2)f(x),即函数是周期为4的周期函数,可得f(2019)f(1+2020)f(1),结合函数的奇偶性与解析式分析可得答案【详解】根据题意,函数f(x)满足f(x+2)f(x),则有f(x+4)f(x+2)f(x),即函数是周期为4的周期函数,则f(2019)f(1+2020)f(1),又由函数为奇函数,则f(1)f(1)(1)21;则f(2019)1;故选:D【点睛】本题考查函数的奇偶性与周期性的应用,注意分析函数的周期6.设 且 ,则 是 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要【答案】D【解析】【分析】由题意看命题“ab1”与“ ”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断【详解】若“ab1”当a2,b1时,不能得到“ ”,若“ ”,例如当a1,b1时,不能得到“ab1“,故“ab1”是“ ”的既不充分也不必要条件,故选:D【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题7.设 , , ,若 ,则与的夹角为( )A. B. C. D. 【答案】A【解析】【分析】由向量的坐标运算得: (0, ),由数量积表示两个向量的夹角得:cos , 可得结果.【详解】由 (1, ), (1,0), 则 (1+k, ),由 ,则 0,即k+10,即k1,即 (0, ),设 与 的夹角为,则cos ,又0,所以 ,故选:A【点睛】本题考查了数量积表示两个向量的夹角、及向量的坐标运算,属于简单题8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为 ,大正方形的面积为 ,直角三角形中较小的锐角为,则 ( ) A. B. C. D. 【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6 ,列方程组求出直角边得出sin,代入所求即可得出答案【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为 6 ,设直角三角形的直角边分别为x,y且xy,则由对称性可得yx+a,直角三角形的面积为S xy6 ,联立方程组可得x3a,y4a,sin ,tan = = = ,故选:D【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题9.如图所示,正方形的四个顶点 , , , ,及抛物线 和 ,若将一个质点随机投入正方形 中,则质点落在图中阴影区域的概率是( ) A. B. C. D. 【答案】B【解析】【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论【详解】A(1,1),B(1,1),C(1,1),D(1,1),正方体的ABCD的面积S224,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:S2 1 dx2( x3) 2(1 )02 ,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是 故选:B【点睛】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键10.如果 是抛物线 上的点,它们的横坐标 , 是抛物线 的焦点,若 ,则 ( )A. 2028 B. 2038 C. 4046 D. 4056【答案】B【解析】【分析】由抛物线性质得|PnF| xn+1,由此能求出结果【详解】P1,P2,Pn是抛物线C:y24x上的点,它们的横坐标依次为x1,x2,xn,F是抛物线C的焦点, ,(x1+1)+(x2+1)+(x2018+1)x1+x2+x2018+20182018+20=2038故选:B【点睛】本题考查抛物线中一组焦半径和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用11.已知函数 ,记 ,若 存在3个零点,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】由g(x)0得f(x)ex+a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可【详解】由g(x)0得f(x)ex+a,作出函数f(x)和yex+a的图象如图:当直线yex+a过A 点时,截距a= ,此时两个函数的图象有2个交点,将直线yex+a向上平移到过B(1,0)时,截距a=-e,两个函数的图象有2个交点,在平移过程中直线yex+a与函数f(x)图像有三个交点,即函数g(x)存在3个零点,故实数a的取值范围是 ,故选:C 【点睛】本题主要考查分段函数的应用,考查了函数零点问题,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键,属于中档题.12.设 是双曲线 的左右焦点, 是坐标原点,过 的一条直线与双曲线 和 轴分别交于 两点,若 , ,则双曲线 的离心率为( )A. B. C. D. 【答案】D【解析】【分析】由条件得到 = ,连接A ,在三角形 中,由余弦定理可得A ,再由双曲线定义A =2a,可得.【详解】 ,得到| , = ,又 ,连接A , ,在三角形 中,由余弦定理可得A ,又由双曲线定义A =2a,可得 , = ,故选D. 【点睛】本题考查了双曲线的定义的应用及离心率的求法,综合考查了三角形中余弦定理的应用,属于中档题.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若 满足约束条件 ,则 的最大值为_【答案】5【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解目标函数的最值即可【详解】x,y满足约束条件 的可行域如图:由 解得A(1,2)由可行域可知:目标函数经过可行域A时,zx+2y取得最大值:5故答案为:5 【点睛】本题考查线性规划的简单应用,目标函数的几何意义是解题的关键,考查计算能力14.设 ,则 的值为_【答案】1【解析】【分析】分别令x=0和x=-1,即可得到所求.【详解】由条件 ,令x=0,则有 =0,再令x=-1,则有-1= , ,故答案为1.【点睛】本题考查二项式定理的系数问题,利用赋值法是解决问题的关键,属于中档题.15.在平面直角坐标系 中,已知过点 的直线与圆 相切,且与直线 垂直,则实数 _【答案】【解析】因为 在圆 上,所以圆心与切点 的连线与切线垂直,又知与直线与直线 垂直,所以圆心与切点 的连线与直线 斜率相等, ,所以 ,故填: 16.已知函数 ,过点 作与 轴平行的直线交函数 的图像于点 ,过点 作 图像的切线交 轴于点 ,则 面积的最小值为_【答案】【解析】【分析】求出f(x)的导数,令xa,求得P的坐标,可得切线的斜率,运用点斜式方程可得切线的方程,令y0,可得B的坐标,再由三角形的面积公式可得ABP面积S,求出导数,利用导数求最值,即可得到所求值【详解】函数f(x) 的导数为f(x) ,由题意可令xa,解得y ,可得P(a, ),即有切线的斜率为k ,切线的方程为y (x ),令y0,可得xa1,即B( a1,0),在直角三角形PAB中,|AB|1,|AP| ,则ABP面积为S(a) |AB|AP| ,a0,导数S(a) ,当a1时,S0,S(a)递增;当0a1时,S0,S(a)递减即有a1处S取得极小值,且为最小值 e故答案为: e【点睛】本题考查导数的运用:求切线的方程和单调区间、极值和最值,注意运用直线方程和构造函数法,考查运算能力,属于中档题三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数 的最小正周期为 ,将函数 的图像向右平移 个单位长度,再向下平移 个单位长度,得到函数 的图像.(1)求函数 的单调递增区间;(2)在锐角 中,角 的对边分别为 ,若 , ,求 面积的最大值.【答案】(1) (2)【解析】【分析】(1)利用三角恒等变换化简函数f(x)的解析式,再根据正弦函数的单调求得函数f(x)的单调递增区间(2)先利用函数yAsin(x+)的图象变换规律,求得g(x)的解析式,在锐角ABC中,由g( )0,求得A的值,再利用余弦定理、基本不等式,求得bc的最大值,可得ABC面积的最大值【详解】(1)由题得:函数= ,由它的最小正周期为 ,得 ,由 ,得故函数 的单调递增区间是(2)将函数 的图像向右平移 个单位长度,再向下平移 个单位长度,得到函数 的图像,在锐角 中,角 的对边分别为 ,若 ,可得 , .因为 ,由余弦定理,得 , , ,当且仅当 时取得等号. 面积 ,故 面积的最大值为【点睛】本题主要考查三角恒等变换,函数yAsin(x+)的图象变换规律,正弦函数的单调性,余弦定理、基本不等式的应用,属于中档题18.设 是等差数列,前 项和为 , 是等比数列,已知 , , , .(1)求数列 和数列 的通项公式;(2)设 ,记 ,求 .【答案】(1) , ;(2)【解析】【分析】(1)设数列 的公差为 等比数列bn的公比为q,由已知列式求得d,q及首项,则可求数列 和bn的通项公式;(2)由(1)知, ,利用错位相减直接求和.【详解】(1)设数列 的公差为 ,等比数列 的公比为由已知得: ,即 ,又 ,所以 ,所以由于 , ,所以 ,即 ( 不符合题意,舍去)所以 ,所以 和 的通项公式分别为 , .(2)由(1)知, ,所以所以上述两式相减,得:= ,得 .【点睛】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题19.已知椭圆 ,点 在椭圆 上,椭圆 的离心率是 .(1)求椭圆 的标准方程;(2)设点 为椭圆长轴的左端点, 为椭圆上异于椭圆 长轴端点的两点,记直线 斜率分别为 ,若 ,请判断直线 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【答案】(1) (2)过定点【解析】【分析】(1)由点M(1, )在椭圆C上,且椭圆C的离心率是 ,列方程组求出a2,b ,由此能求出椭圆C的标准方程(2)设点P,Q的坐标分别为(x1,y1),(x2,y2),当直线PQ的斜率存在时,设直线PQ的方程为ykx+m,联立 ,得:(4k2+3)x2+8kmx+(4m212)0,利用根的判别式、韦达定理,结合已知条件得直线PQ的方程过定点(1,0);再验证直线PQ的斜率不存在时,同样推导出x01,从而直线PQ过(1,0)由此能求出直线PQ过定点(1,0)【详解】(1)由点 在椭圆 上,且椭圆 的离心率是 ,可得 ,可解得:故椭圆 的标准方程为 .(2)设点 的坐标分别为 ,()当直线 斜率不存在时,由题意知,直线方程和曲线方程联立得: , ,()当直线 的斜率存在时,设直线 的方程为 ,联立 ,消去 得: ,由 ,有 ,由韦达定理得: , ,故 ,可得: ,可得: ,整理为: ,故有 ,化简整理得: ,解得: 或 ,当 时直线 的方程为 ,即 ,过定点 不合题意,当 时直线 的方程为 ,即 ,过定点 ,综上,由()()知,直线 过定点 .【点睛】本题考查椭圆方程的求法,考查直线方程是否过定点的判断与求法,考查椭圆、直线方程、根的判别式、韦达定理等基础知识,考查运算求解能力、推理论证能力,是中档题20.在创新“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示: (1)由频数分布表可以大致认为,此次问卷调查的得分 , 近似为这100人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求 ;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于 的可以获赠2次随机话费,得分低于 的可以获赠1次随机话费;每次获赠的随机话费和对应的概率为: 现有市民甲参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求 的分布列与数学期望.附:参考数据与公式: ,若 ,则 , , .【答案】(1)0.8185(2)详见解析【解析】【分析】(1)由题意计算平均值,根据ZN( , )计算 的值;(2)由题意知X的可能取值,计算对应的概率值,写出分布列,计算数学期望值【详解】(1)由题意得: , , , ,综上,(2)由题意知, ,获赠话费 的可能取值为20,40,50,70,100 ; ; ; , ; 的分布列为: 【点睛】本题考查了离散型随机变量的分布列、数学期望以及正态分布等基础知识,也考查了运算求解能力,是中档题21.已知函数 , , .(1)已知 为函数 的公共点,且函数 在点 处的切线相同,求的值;(2)若 在 上恒成立,求的取值范围.【答案】(1) (2)【解析】【分析】(1)求出函数的导数,由函数f(x),g(x)在点T处的切线相同,得到 ,且 ,从而求出a的值即可;(2)令 ,将a与0、e分别比较进行分类,讨论 的单调性及最值情况,从而找到符合条件的a的值.【详解】(1)由题意 , ,点 为函数 的公共点,且函数 在点 处的切线相同,故 且 ,由(2)得: , , ,从而 ,代入(1)得: , , .(2)令 ,当 时, , 在 单调递增, ,满足题意;当 时, , , , , 在 单调递增,需 解得: ,当 时, ,使当 时, , 单调递减;当 时, , 单调递增; , , ,不恒成立,综上,实数的取值范围是 .【点睛】本题考查了导数的几何意义及函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 局部放疗与免疫治疗联合的时机选择
- 医生形象:专业与亲和并行
- 医学检验质量改进汇报
- 医疗废物处理与环保意识
- 肩关节镜术后并发症观察与应急处理
- 儿童睡眠障碍的护理干预与家庭指导查房
- 医疗行业危机公关处理
- 医院医疗废物处理规范执行效果汇报
- 医疗信息化与医院信息化发展现状
- 人工智能在病理诊断中的应用
- 2025中国葛洲坝集团易普力股份有限公司禹州分公司招聘22人(河南)笔试参考题库附带答案详解
- 2025年违规吃喝谈心谈话记录
- 生产现场成本培训课件
- 瓶装液化气安全培训课件
- 2025年阿拉伯语水平测试模拟试卷:阿拉伯语国家历史与文化试题
- DB61T 1244-2019 养老护理服务规范 认知障碍老年人照护
- 2025年人教版七年级英语上册 Unit4课时1SectionA(1a-pronunciation)分层作业(学生版+教师版)
- 专题10 铁、铜及其化合物(原卷版)【好题汇编】十年(2016-2025)高考化学真题分类汇编(全国通.用)
- 数字经济总结汇报
- GB/T 4556-2025往复式内燃机防火
- DB12∕T 1339-2024 城镇社区公共服务设施规划设计指南
评论
0/150
提交评论