资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若为等差数列,为其前项和,若,则成立的最大自然数为( )A11 B12 C13 D142 已知an=(nN*),则在数列an的前30项中最大项和最小项分别是( )Aa1,a30Ba1,a9Ca10,a9Da10,a303 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D44 数列an满足an+2=2an+1an,且a2014,a2016是函数f(x)=+6x1的极值点,则log2(a2000+a2012+a2018+a2030)的值是( )A2B3C4D55 为得到函数的图象,可将函数的图象( )A向左平移个单位B向左平移个单位C.向右平移个单位D向右平移个单位 6 已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x7 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D18 在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.9 函数y=ecosx(x)的大致图象为( )ABCD10O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则POF的面积为( )A1BCD211已知一三棱锥的三视图如图所示,那么它的体积为( )A B C D12方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆二、填空题13函数的定义域是 14若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是15在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为16已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是18在ABC中,已知=2,b=2a,那么cosB的值是三、解答题19设椭圆C: +=1(ab0)过点(0,4),离心率为(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标20 21在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由22ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B23设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值24已知函数f(x)=sin2xsin+cos2xcos+sin()(0),其图象过点(,)()求函数f(x)在0,上的单调递减区间;()若x0(,),sinx0=,求f(x0)的值资溪县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】考点:得出数列的性质及前项和【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键 2 【答案】C【解析】解:an=1+,该函数在(0,)和(,+)上都是递减的,图象如图,910这个数列的前30项中的最大项和最小项分别是a10,a9故选:C【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题3 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题4 【答案】C【解析】解:函数f(x)=+6x1,可得f(x)=x28x+6,a2014,a2016是函数f(x)=+6x1的极值点,a2014,a2016是方程x28x+6=0的两实数根,则a2014+a2016=8数列an中,满足an+2=2an+1an,可知an为等差数列,a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键5 【答案】C【解析】试题分析:将函数的图象向右平移个单位,得的图象,故选C考点:图象的平移.6 【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查7 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D8 【答案】B9 【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力10【答案】C【解析】解:由抛物线方程得准线方程为:y=1,焦点F(0,1),又P为C上一点,|PF|=4,可得yP=3,代入抛物线方程得:|xP|=2,SPOF=|0F|xP|=故选:C11【答案】 B 【解析】解析:本题考查三视图与几何体的体积的计算如图该三棱锥是边长为的正方体中的一个四面体,其中,该三棱锥的体积为,选B12【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.二、填空题13【答案】考点:定义域14【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题15【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题16【答案】17【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:418【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,b=4,由e=,得1=,a=5,椭圆C的方程为+=1(2)过点(3,0)且斜率为的直线为y=(x3),设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x3)代入椭圆C方程,整理得x23x8=0,由韦达定理得x1+x2=3,y1+y2=(x13)+(x23)=(x1+x2)=由中点坐标公式AB中点横坐标为,纵坐标为,所截线段的中点坐标为(,)【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键20【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可【解析】解:(1)由题意得,(0.02+0.032+a+0.018)10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.210+0.3220+0.330+0.1840=24.6(克)故估计盒子中小球重量的平均值约为24.6克(2)利用样本估计总体,该盒子中小球的重量在5,15内的0.2;则XB(3,),X=0,1,2,3;P(X=0)=()3=;P(X=1)=()2=;P(X=2)=()()2=;P(X=3)=()3=,X的分布列为:X0123P即E(X)=0=【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力21【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题22【答案】 【解析】解:()由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinAsinB=sinA, =()由余弦定理和C2=b2+a2,得cosB=由()知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB0,故cosB=所以B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化23【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,得x24kx4=0,由根与系数的关系知,|AC|=4(1+k2),因为ACBD,所以BD的斜率为,从而BD的方程为y=x+1同理可求得|BD|=4(1+),SABCD=|AC|BD|=8(2+k2+)32当k=1时,等号成立所以,四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论