初中数学自主学习能力的培养.doc_第1页
初中数学自主学习能力的培养.doc_第2页
初中数学自主学习能力的培养.doc_第3页
初中数学自主学习能力的培养.doc_第4页
初中数学自主学习能力的培养.doc_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学自主学习能力的培养学生自主学习是一种自律学习,是一种主动学习,因为每一个学生都是一个独立的人,学习是学生自己的事情,这是教师不能代替也是代替不了的,教师只是起指导作用,每一个学生都有一种独立的要求,除有特殊原因外,都有相当强的独立学习能力,现行教学改革要求改变单纯接受式学习,讲究从“一刀切”教学向关注个体差异的教学转变,强调发现学习、探究学习、研究学习、自主学习显得更加重要。正因为如此,培养学生自主学习数学的能力显得十分重要。我认为培养学生的数学自主学习能力可以从情感、课外及课内方面入手: 情感方面:1首先建立良好的师生关系。平时注重对学生情感的投入,热爱学生,了解学生,在教学活动中尽力为学生创造成功的机会,在学生学习困难时给予帮助,在成功时给予赞扬,正确对待学生中的个体差异,让不同层次的学生都有发表自己见解的机会,评价时做到不褒此贬彼。2激发学生的求知欲。主要途径有两个:其一营造课堂氛围。通过教师营造课堂氛围,激发学生因惑质疑,激发学生产生悬念,进入欲罢不能的心里状态,进入发现者的“愤悱”状态,或在问题中溶入一些趣味,激发学生发现问题的欲望与兴趣。其二创设问题情境,通过设计一个问题的模拟发现过程或借助类比联想等方法,使学生置身于发现问题的情境中,进入发现者的角色,从而激发学生生疑质疑。课内方面:除了要重视老师的教学方式。也要尊重发挥学生的学习方式,学习方式是学习者持续一贯表现出来的学习策略和学习倾向的总和.学习策略指学习者完成学习任务或实现学习目标而采用的一系列步骤,其中某一特定步骤称为学习方法,例如:有的学生倾向于借助具体形象进行记忆和思考,有的学生偏爱运用概念进行分析,叛断和推理;有人善于运用视觉通道,有人倾向于运用听觉通道,也有人喜欢运用动觉通道。学生在学习过程中会表现出不同的学习倾向,包括学习情绪、态度、动机,坚持性以及对学习环境,学习内容等方面的偏爱。比如有人喜欢在竞争中学习,有人偏爱合作学习,有的学生能够从学习本身感受到乐趣,还有人能够在复杂的环境中有效的工作和学习,指导自主学习不仅要鼓励学生独立且富有个性地学习,更倡导主动参与合作学习,在学习中学会合作,还要鼓励倡导学生在探究中学习,经历并体验探究过程,在深入思考和交流讨论中获得感悟与深入理解,建立“主动参与,乐于探究,交流与合作”特征的学习方式。学习方式三个方面并不是相互独主、互不相容,也可以相互运用。 课内的具体措施有: 1开始阶段关健的一环就是传授学生学习方法,并使他们对自己的学习方法具有“反省认知”和不断改进的能力,从而达到不完全依赖老师也能把功课学好的目标,这一阶段对学生的要求归纳为培养五种能力即:能分析关键字句和符号标记;能读懂字意,句意,式意,例题意;能分析写出标题;能找出教材中的主要句段;能用不同颜色笔画出重点和注意事项,指导学生阅读时做到“三读”。第一遍粗读:即扫清文字、符号障碍,了解本节大概内容。第二遍细读:即读句,逐句解释,把课本中某些省略了推理依据或中间运算补写出来并对课本中重难点加圈加点作记号,第三遍精读:即在学生基本掌握教材知识,完成练习后,再重点分析关健词,重点句子,归纳总结和写学习体会,教师常采用提问,抽查等方式进行检查,并注意与家长逐步配合逐步培养。上课时大至步骤如下: 开始阶段教师引导学生围绕教学目标、教学内容和自学提纲进行讨论小测,约二十分钟,练习做完自检或他检相结合。 教师用十分钟左右答疑精讲。用十分钟左右学生进行自我检测。用五分钟左右由学生或教师进行归纳总结,总结经验,调节学习行为。 2经过一般时间以后上课大自如下:先按照好中差组成的学习小组讨论解决课前预习中遇到的问题约十分钟,课前预习中的内容包括课程内容及课后练习和自己学做教具。由小组长或教师解答小组不能解答的问题,因势利导讲解重难点内容约十五至二十分钟,如果问题小组能够解决,由小组长或其他同学上讲台讲解例题,能够用教具讲解的尽量由学生用自己做的教具讲解。用十分钟左右做教师或学生出的自测题,自测题的内容不宜过多,难度适中,做完后由学生交换批改订正,教师抽查部分自测题,了解存在的问题。小结由教师或学生进行总结约五分钟,最后布置下节课的预习内容。学生作业要求学习小组长超前一课时把学习小组好中差(3人)的作业批改好,填好反馈卡,教师抽部分作业了解存在的问题。每学一单元之前与之后均开设导学课与归纳总结课。教师指导学生自己自学,讨论,归纳总结,形成知识网络,自己写章节单元小结,整理知识结构。上课一些较容易例题及黑板上练习答案,可由学生上讲台自己讲解、订正,尽量做到一题多解,开拓思路。 教师应注意以下三点:1教师不断提高自己的“启发”艺术和技巧,激发学生求知欲,开始教师可出自学提纲到后面渐渐可在教师指导下让学生自己出。2课堂上严格遵循“三讲三不讲”原则:学生对基本概念、规律的理解和运用,出现错误或易混淆之处要讲;学生新旧知识断线之处要讲;学生解答不完整、知识抓不到要领、思路阻塞之处要讲。三不讲是:已学懂的内容不讲;似懂非懂的内容不讲,通过组织讨论解决;没有熟练的技能技巧不讲,组织他们练习。3特别注意对学习有困难的学生的辅导,有意识地观察他们看书和做练习,从中发现问题及时纠正,以逐步改变他们在学习中的被动状态。4对于学习有困难的学生可布置少量或不易出错的作业,形成良性循环,尽量发挥他们的闪光点。每单元考试后要求每个学生对自己的成绩作评价。如是否有进步,主要在哪些方面出错了,有错之处要求“错一做三”,对于不及格的同学可以进行补考。课外:1学生课外预习的练习可分层布置:差生及中等生布置做A组作业,优生做A组及B组选做题。书本上较简单的题目让学生直接解答在书本上,需书写过程的习题做在练习本上若遇到不会做的抄在练习本上,留出相应的写作位置,等到教师讲解或理解后再补上。2鼓励学生课后预习时提出问题记在笔记本上,好的提问可由小组长把原题记在数学科代表的本子上,可适当加入学期平均成绩。课后方面:课后自主学习教师可鼓励有条件的学生上网查询数学资料、史料拓宽视野,节假日鼓励较近的学习有困难的学生或中等生一起到优生家中合作学习、互补学习,及时解答疑难问题。鼓励学生自己出题,教室黑板可设立一块数学园地,每天小组长轮流更新一道习题,习题允许出自于课本但不得重复。每一单元接近结束时要求每个同学利用课后均出一张考试卷,教师可筛选优秀的卷子经过适当加工作为单元考试卷。课后鼓励学生做教具。如学习几何三角形全等定理“SAS”,就可让学生自己用硬纸片做两个三角形,其中一个三角形的对应角不是两条对应边的夹角,结果两个三角形不全等。上课时让学生带进课堂来分析三角形不全等的原因。如在学习等腰三角形的基本性质时布置学生自己用硬纸皮制作一个等腰三角形,把等腰三角形对折,体会等腰三角形底边上的中线、底边上的高、顶角上的角平分线互相重合。使学生在学做教具的同时在自主学习数学。课后可指导学生写小论文,如我是这样进行自主学习的,课后先自主预习的好处,学习中如何发挥主动性等,进行探究性学习。初中数学学科德育渗透一、 指导思想: 人的培养在于教育,德育则是教育的首位。邓小平曾指出:我国改革开放以来,最大的失误在于教育。一针见血,击中要害,因此,我国要坚定地沿着中国特色的社会主义道路前进,培养“四有”的无产阶级革命事业接班人和劳动者,全面加强德育教育势在必行。作为基础学科的语文肯定也必须重视德育教育。 二、培养目标: 新课程的培养目标指导我们,要使学生具有爱国主义、集体主义精神,热爱社会主义,继承社会主义民主法制意识,遵守国家法律和社会公德;逐步形成正确的世界观,人生观,价值观;具有社会主义责任感,努力为人民服务,要使学生成为有理想、有道德、有文化、有纪律的一代新人。针对学生的德育基础,结合学生的实际开展德育教育。三、措施方法: (一)充分发挥教师在教学中体现的人格魅力。德育过程既是说理、训练的过程,也是情感陶冶和潜移默化的过程。教师自身的形象和教师体现出来的一种精神对学生的影响是巨大的,也是直接的。教师的板书设计、语言的表达、教师的仪表等都可以无形数学课,老师做了大量的准备,采取了灵活多样的教学手段,这样学生不仅学得很愉快,而且在心里还会产生一种对教师的敬佩之情,并从老师身上体会到一种责任感,这样对以后的学习工作都有巨大的推动作用。 (二)充分利用教材挖掘德育素材。认真钻研教材,充分发掘教材中潜在的德育因素,把德育教育贯穿于对知识的分析中。 (三)在教学过程中进行德育渗透。教师在教学过程中,可以采取灵活多样的教学方法潜移默化的对学生进行德育教育,比如研究性学习,合作性学习等。拿教学方法来说,我们可以采取小组合作学习法,这种学习法共享一个观念:学生们一起学习,既要为别人的学习负责,又要为自己的学习负责,学生在既有利于自己又有利于他人前提下进行学习。在这种情景中,学生会意识到个人目标与小组目标之间是相互依赖关系,只有在小组其他成员都成功的前提下,自己才能取得成功。还可以从小让他们养成严肃看待他人学习成绩的习惯。(四)利用活动和其他形式进行德育教育。德育渗透不能只局限在课堂上,应与课外学习有机结合,我们可以适当开展一些活动课和主题活动。 在数学课教学中渗透德育,犹如“春雨润物细无声”,在学生纯洁无瑕的心田里,种下美好的种子,必能开出绚丽的花朵。这种潜移默化的德育渗透,是其它德育方法无法代替的。因此,做为一名数学教师要提高渗透的自觉性,把握渗透的可行性,注重渗透的反复性。我相信只要在教学中,结合学生思想实际和知识的接受能力,点点滴滴,有机渗透,耳濡目染,潜移默化,以达到德育、智育的双重教育目的。初中数学探索能力及其培养我们一般认为,数学的能力,分为两种水平:一种是独立创造具有社会价值的数学新成果的能力;一种是在数学学习过程中,学习数学的能力。中学阶段,我们应该培养学生怎样的数学能力呢?无疑首先应该培养学生的“数学学习能力”,因为中学阶段的数学学习毕竟是将来学习数学,运用数学,以及进行数学创新的基础,也正是基于这一点,我们的传统教学,特别重视数学学习能力的培养,采取的方法是“满堂灌”让学生多听一点;教出的学生是“记忆型”学生的大脑都成了知识的仓库。但是,学习数学的最终目的,却是数学的运用与创新。不论是数学的运用,还是数学创新,都离不开探索,没有了探索,任何学科包括数学,都会失去灵魂。现在有许多人都在思考:为什么从小学到中学,都是中国人要领先,可到了成年以后,我们的研究成果怎么就不如别人呢?有人说,中国水平和世界水平,只差“一步”,这“一步”是什么呢?我认为,我们教育的症结就在于,我们太重视学生的学习能力,而忽略了探索和创新能力的培养。长期以来,我们已经习惯了“老师教”,“学生学”的教学模式,特别是数学,她的抽象和严密,几乎让人感觉到,数学就是这么呆板吧。我们常说,学生是学习的主人,但有时候,我们的教育,却让学生处于从属地位,长此以往的结果,只能使学生对数学敬而远之,甚至是畏而远之。我认为,这应该是我们教育的失败。因此,改革数学教学,把培养学生的探索能力也作为我们教学活动的重要一环,实在是必要、重要和紧迫。培养学生的数学探索能力,是一项系统的工程,它包含了许多方面,以下是我在教学实践中,培养学生数学探索能力的几点尝试,它包括培养兴趣、指导方法、鼓励质疑、鼓励创新等几个方面。 一、培养数学兴趣,让学生学有动力兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:1.加强基础知识的教学,使学生能接近数学。数学并不神秘,数学就在我们周围,我们时时刻刻都离不开数学。2.重视数学的应用教学,提高学生对数学的认识。许多人认为,学那么多数学有什么用?日常生活中根本用不到。事实上,数学的应用充斥在生活的每个角落。以往的教材是和生活实践是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈出的一大步,比如线性规划问题就是二元一次不等式组的一个应用。教学中重视数学的应用教学,能让学生充分感受到数学的作用和魅力,从而热爱数学。3.引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。4.鼓励攻克数学,使其在发现和创造中享受成功的喜悦。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学生不断探索的欲望。二、指导学习方法,给学生学习的钥匙“未来的文盲不再是不识字的人,而是没有学会怎样学习的人”,这充分说明了学习方法的重要性,它是获取知识的金钥匙。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。因此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会学”。在教学中,我主要在读、议、思等几个方面给以指导。1.教会学生“读”,这主要用来培养学生的数学观察力和归纳整理问题的能力。我们知道,数学观察力是一种有目的、有选择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培养学生对数学材料的直观判断力,这种判断包括对数学材料的深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。这在预习和课外自学中尤为重要。2.鼓励学生“议”,在教学中鼓励学生大胆发言,对于对于那些容易混淆的概念,没有把握的结论、疑问,就积极引导学生议,真理是愈辩愈明,疑点愈理愈清。对于学生在议中出现的差错、不足,老师要耐心引导,帮助他们逐步得到正确的结论。 3.引导学生勤“思”,从某种意义上来说,思考尤为重要,它是学生对问题认识的深化和提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系,适时地组织引导学生展开想象:题设条件能否减弱?结论能否加强?问题能否推广?等等。 三、鼓励质疑,激起向权威挑战的勇气我们会经常遇到这样的情况:有的同学在解完一道题是时,总是想问老师,或找些权威的书籍,来验证其结论的正确。这是一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创新。长此以往的结果,只能变成唯书本的“书呆子”。中学阶段,应该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为重要。若果真找出“权威”的错误,对学生来讲也是莫大的鼓舞。教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方面。四、鼓励学习创新,让学生学有创见在数学教学中,我们不仅要让学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造性地学习。1.注意培养学生发现问题和提出问题的能力,老师要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 2.引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。 以上是我在培养学生探索能力方面的一些做法,当然,教无定法,在培养学生的同时,我们也要不断探索,以找出更好的提高学生数学素质的方法。 初中数学问题情境设计与创新能力培养数学课程标准强调数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下生动活泼地、主动地、富有个性的学习。现代数学教学理念认为,数学教学是数学思维过程的教学,学生学习数学的过程是头脑中构建数学认知结构的过程。问题是数学的心脏,是创造思维的源泉。在教学中,我们应有意识地创设发现问题的情境,这是发展思维的关键一环,也是培养学生创新能力的好途径。 一、创设情境,培养学生的学习兴趣。兴趣是最好的老师,学生有了学习兴趣,他们的思维就会保持在积极的探索状态之中,有了兴趣他们把学习作为自己内心的需要,而不是把学习当作一种负担。在教学中,我们应有意识地创设问题情境,激发学生求知的欲望。1、用新旧知识的冲突,激发学生的探索欲望。例如,在“正弦和余弦”概念教学时,设计如下两个问题: RtABC中,已知斜边和一直角边,怎样求另一直角边? 在RtABC中,已知A和斜边AB,怎样求A的对边BC?问题学生自然会想到勾股定理,而问题利用勾股定理则无法解决,从而产生认知上的冲突怎样解决这类问题呢?学生的探求新知识的欲望便会油然而生,产生学习兴趣。2、利用学生在生活中熟知的,常见的实际问题来激发学生的探索欲望。如在教“统计初步”时,设计以下例子:孙老师为了从甲乙两名运动员中选取一人参加比赛,两人在相同条件下各跳10次,成绩如下表:甲:5.75.85.65.85.65.55.96.05.75.4乙:5.95.55.75.85.75.65.85.65.75.7怎样比较两人的成绩高低,选谁参加比赛?孙老师经过科学的数据处理,选出一名运动员参加比赛,取得了较好的成绩。他是怎样计算的呢?学生此时思维活跃起来,对探求新知识兴趣昂然,师生很顺利地完成此节内容,同时也加深了学生对数学知识来源于生活又应用于生活的认识。 3、利用数学小实验,引发学生的好奇心和求知的欲望。例如,在讲三角形内角和定理时,可以这样设置问题:把课前剪好的ABC纸片,剪下A、B和C拼在一起,观察它们组成什么角?由此你能猜出什么结论?在拼图中,你受到哪些启发?(指如何添加辅助线来证明)这样创设情境,使学生认识到ABC180o ,从而对三角形内角和定理有一个感性认识,同时通过拼角找出定理的证明方法,学生在动脑、动手、动眼、动口的实践中,培养了观察能力,提高了学习兴趣。二、创设情境,鼓励学生主动参与,在亲历数学建构过程中培养学生的创新意识。美国教育家布鲁纳认为:“知识的获取是一个主动的过程,学习者不应该是信息的被动接受者,而应是知识获取的主动参与者。”在课堂教学中创造条件,创设情境,让学生自己去探索、去发现,亲历数学构建过程,掌握认识事物,发现真理的方式方法。从而培养学生的创新意识。记得讲勾股数时,教师出示了这样几组勾股数,请同学们讨论这些勾股数的特征: 3,4,5;5,12,13;7,24,25;9,40,41开始学生们只注意到:每组勾股数的前一个数都是奇数,后两个数是一奇一偶,之后陷入僵局。教师启发道:一奇一偶之间有什么联系?学生们发现是连续数。忽然一名学生发现后两数之和恰是一个完全平方数,稍一顿,即抬头,急切地说:“这两个数的和恰是一个完全平方数,这个完全平方数就是前一个数的平方”这样,在思考,观察中发现规律,灵感一触即发。学生们找到了勾股数的特征:即大于1的奇数的平方分成两个连续的自然数,此奇数与这两个连续自然数成勾股数。 模仿只能跟着走,创新才会出人才。教师在教学中必须发挥主导作用,创设问题情境,引起学生的学习兴趣,引发学生去探索和思维,引导学生去大胆创新,为培养一代社会主义新人做出自己的应有的贡献。关于数学教学生活化的点滴体会 -课程标准更多地强调学生用数学的眼光从捕捉数学问题,主动地运用数学知识,分析生活现象,自主地解决生活中的实际问题。因此,在数学教学中应重视学生的生活体验,把数学教学与学生的生活体验相联系,把数学问题与生活情境相结合,让数学生活化,生活数学化。 在日常教学中通过以下途径可以把数学教学与学生生活有机地结合起来: 一、使教学内容生活化生活中更多地强调学生用数学的眼光从捕捉数学问题,主动地运用数学知识1发掘教材中的生活化学习资料:在新教材的编排中,穿插了一些供学生阅读的短文,即“读一读”栏目。我们在教学时,经常组织学生认真学习,并要求学生发表学习心得,上台演讲等。这些材料一方面可以帮助学生了解有关数学知识的产生和发展,把握数学与生产生活实际密不可分的关系,另一方面可以通过了解我国在数学上的重大成就,激发学生的爱国热情。 2发掘实际生活中的学习材料:包括关注校园生活中的数学资源,留心社会生活中的数学资源,了解家庭生活中的数学资源。校园、家庭、社会环境都是学生生活的场所,通过对这些资源的收集利用,使学生感受到数学与我们的生活密不可分,我们应该学好数学,用好数学。 二、课外应用的生活化 数学应用于实际,才会变得有血有肉、富有生气,才能让学生体验到数学的价值和意义,确立用数学解决实际问题的意识和信心。教师要引导学生用数学的眼光去观察、分析、解决生活中的问题。 开设生活化的数学实践活动,让学生在活动中应用、发展数学。例如:在学习了三角形的相似之后,让学生分组到操场上测量旗杆的高度。学习了统计图表以后,让学生三四人一组到十字路口去收集某一时刻的车流量,然后制成一张统计表。引导他们运用所学知识和方法去分析解决生活中的实际问题,使他们意识到数学知识真正为我们的学习、生活服务。 转贴于 中国论文下载 总之,教师要认真耕耘好生活实际这块“土壤”。一方面让学生在生活实际的情境中体验数学问题,结合自身的生活经验和已有的认知水平,围绕问题的解决,逐步把生活常识数学化;另一方面让学生自觉地把数学知识运用到各种具体的生活情景中,实现数学知识生活化,从而达到提高学生数学素养的目的,使学生切实体验到“生活离不开数学”,“人人身边有数学”。从而提高学生的学习兴趣,增强学习数学的自信心;培养学生收集和处理信息的能力;培养学生的合作意识和合作能力;培养学生应用知识解决问题的能力。使教师对教材的使用更加合理,实现教学观念、教学方式的转变,提升教师的教学能力。转变学生学习方式的探索与体会作为一名教师,为扎扎实实实施素质教育,促进学生的主动发展、全面发展、终身发展,就必须变革以教师为中心、以书本为中心的课堂教学局面,让学生的学习行为方式发生实质性的变化,促进学生创新意识和实践能力的发展。现将笔者在课改中转变学生学习方式的尝试与体会总结如下,以便与广大同仁进行研究交流。一、以教师的宽容之心、平等之态营造一个学生勇于充分参与的“学堂”小学生刚刚升入初中时,课堂上积极发言,大胆发表自己的看法,可没过多长时间,学生都变的不爱发言,课堂气氛也变得紧张严肃,下课后学生都呆呆的,一副无精打采的样子,经过一段时间的观察,我发现问题出现在老师身上,当学生回答问题比较正确时,老师便喜笑颜开、大加表扬;当回答不正确时,老师总是百般启发,用期待的目光搜寻,小小初中一年学生便学会了观察猜测,迎合老师的心思,害怕答错,老师不高兴。有的时候对于简单的问题,如果差生回答错了,同学们笑,老师再加一句:“这么简单的问题都不会。”这样就扼杀了一个学生积极向上的信心。所以教师要允许学生出错。因为学生只有经过磨炼才能成长,如果一个人不犯成长中的错误,怎能吸取教训不断进步呢?再者教师要尊重学生,不要居高临下指责学生,为什么学生与学生小组讨论时气氛那么热烈,而站起来和老师对话时就不能想什么说什么?所以老师要把自己当作学生的朋友、伙伴,以促进者的姿态与学生对话,把学生置于对话的出发点和核心,应学生而动,因情境而变。只有这样,参与对话的学生才能敞开内心世界;才能真诚地倾听和接纳教师的观点,才能大胆思考、恬静发表自己的观点,这样学生的创新能力就能进一步得到培养。总之,教师对学生的评价应该用爱的语言去打造,不管是对表现好、成绩优秀的学生,还是对成绩差,有“不良倾向”的学生只要他们去思考,有创新意识,都要赞扬激励他们。特别是那些在学习上有暂时困难的学生,他们才是最渴望老师鼓励和关爱的人,一句赞扬,在我们看来不足道的,说不定会成就他们的未来。二、课堂上注重发挥学生的自我评价和相互评价功能,让学生在合作交流中增长新知传统教学中,教师讲、学生听,所以教出来的学生只会照搬、迷信前人的言论和思想,缺乏思考和创新的能力。而独立思考是合作学习的前提。新课程的培养目标也是如此。当学生对一个问题进行独立思考后,鼓励其大胆地发表自己的看法,让同学们参与评价,教师进行点评,也就是说对于学生的想法不能一刀切,简单地认为对还是错,要合理地分析学生的出发点,只要动脑子思考了,就给予肯定,即便不对也要通过分析说明,让学生知道问题所在。浅谈数学教学中培养学生的创新能力在实际教学过程中对学生创新能力的培养,已引起广大数学教师的高度重视,如何培养学生创新能力,找到培养和发展学创新生能力的有效途径,在数学教学中愈来愈显得重要。 本人在具体的数学教学过程中,注重了学生创新能力的培养的几点做法和体会如下: 一、数学教师的创新意识是培养学生创新能力的首要条件 教育本身就是一个创新的过程,教师必须具有创新意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思想到教学方式上,大胆突破,确立创新性教学原则。 (一)克服对创新认识上的偏差。一提到创新教育,往往想到的是脱离教材的活动,如小制作、小发明等等,或者是借助问题,让学生任意去想去说,说得离奇,便是创新,走入了另一个极端。其实,每一个合乎情理的新发现,别出心裁的观察角度等等都是创新。一个人对于某一问题的解决是否有创新性,不在于这一问题及其解决是否别人提过,而关键在于这一问题及其解决对于这个人来说是否新颖。学生也可以创新,也必须有创新的能力。教师完全能够通过挖掘教材,高效地驾驭教材,把与时代发展相适应的新知识、新问题引入课堂,与教材内容有机结合,引导学生再去主动探究。让学生掌握更多的方法,了解更多的知识,培养学生的创新能力。 (二)建立新型的师生关系,创设宽松氛围、竞争合作的班风,营造创造性思维的环境 首先,要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多学生是观众、的旧地教学模式。因为这种课堂教学往往过多地发挥教师的主导作用,限制了学生创造性思维的发展。教师应以训练学生创新能力为目的。保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生在教育教学过程中能够与教师一起参与教和学中,做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力;其次,班集体能集思广益,有利于学生之间的多向交流,在班集体中,取长补短。课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论、查缺互补、分组操作等内容,锻炼学生的合作能力。特别是一些不易解决的问题,让学生在班集体中开展讨论,这是营造创新环境发扬教学民主环境的表现在班集体中。学生在轻松环境下,畅所欲言,各抒己见,学生敢于发表独立的见解,或修正他人的想法,或将几个想法组合为一个更佳的想法,从而在学习过程中,培养学生集体创新能力。值得注意的是,任何合作,都不要让有的学生处于明显的从属地位,都是应细心把握,责任确定到每个学生,最大限度调动学生潜能。 (三)教师应当充分地鼓励学生发现问题,提出问题,讨论问题、解决问题,通过质疑、解疑,让学生具备创新思维、创新个性、创新能力。 教师运用有深度的语言,创设情境,激励学生打破自己的思维定势,从独特的角度提出疑问。鼓励学生进行批判性质疑。批判性质疑是创新思维的集中体现,科学的发明与创造正是通过批判性质质疑开始。让学生敢于对教材上的内容质疑,敢于对教师的讲解质疑,特别是同学的观点,由于商榷余地较大,更要敢于质疑。能够打破常规,进行批判性质疑,并且勇于实践、验证,寻求解决的途径,是具有创新意识的学生必备的素质。 在课堂教学过程中,教师在每堂课里都要进行各种总结,也必须有意识地让学生总结,总结能力是一种综合素质的体现。培养学生总结能力,即锻炼学生集中思维的能力,这与培养学生的求异思维是相辅相成的,集中思维使学生准确、灵活地掌握各种知识,将它们概括、提取为自己的观点、作为求异思维的基础,保障了求异思维的广度、新颖程度和科学性。培养总结能力,课堂教学中要将总结的机会尽可能地放给学生,如总结一个问题总结一堂课的内容;总结一次讨论的结果;总结一次辩论的正、反意见等。 初中数学求最值的教学案例 (七年级数学) 在进行数学七年级上册一元一次不等式的应用教学时,在拓展思维环节举出了下面这样一个例题,随着教学过程的深入,很有感想: 例题:在一个双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格如下表所示: 船 型 每只船载人数 租金 大船 5 3元 小船 3 2元 请你帮助设计一下:怎样的租船才能使所付租金最少?(严禁超载) 师:谁能公布一下自己的设计方案?(学生都在紧张的思考中) (突然间,我发现一名平时学习较困难的学生这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。) 生:我认为可以租大船,可以租小船,也可以大船和小船合租! (这时,教室里哄堂大笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。) 师:很好!你为他们设计了三种方案。那你能不能再具体为他们计算出租金呢? 生(一下子来劲了): 如果租大船,则需要船只数为48/5=9.6只,因为不能超载,所以租大船需10只,则所付租金要310=30元。 如果租小船,则需要船只数为48/3=16只,则所付租金要162=32元。 如果既租大船又租小船(说到这里,该生卡了壳) (我边认真听,边将他的方案结论板书在黑板上,看见卡了壳,便赶紧答上话) 师:刚才同学真的不错,不但一下子设计了三种方案,还差不多完成了全部租金的计算,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。 好,下面我就让我们一同把剩下的一种方案的租金来完成吧。 (在师生的共同研讨中得出): 设租用X只大船,Y只小船,所付租金为A元。 则: 5X + 3Y = 48 A = 3X + 2Y 得到:A = 1/3X + 32 因为:0 5X 48 且X为正整数 所以:X = 9时,A最小值 = 29 即租用9只大船和1只小船时,所付租金最少,最少租金为29元。此时有 45人(59)坐大船,有3人坐小船。 师:今天的课程内容还有一项,那就是请同学(示意刚才的同学)谈谈这堂课的感想。 生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的游船题目恰好是我前几天才去坐过的,所以一下子 我今天才发现不是这样 我今后还会努力发言的 理念反思: 从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、民主、自由。课题:探索三角形全等的条件(一)一、教学设计: 1 学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。 2.学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。 3. 教学目标: (1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。 5 教学的重点与难点: 重点:三角形全等条件的探索过程是本节课的重点。 从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。 难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。 根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。解直三角形应用一教学目标(一)知识目标明巩固直角三角形中锐角的三角函数,学会解关于坡度角和有关角度的问题(二)能力目标逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法(三)德育目标培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点二、教学重点、难点和疑点1重点:能熟练运用有关三角函数知识2难点:解决实际问题3疑点:株距指相邻两树间的水平距离,学生往往理解为相邻两树间的距离而造成错误三、教学过程1探究活动一教师出示投影片,出示例题例1 如图6-29,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24,求斜坡上相邻两树的坡面距离是多少(精确到0.1m)分析:1例题中出现许多术语株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点2引导学生将实际问题转化为数学问题画出图形(上图6-29(2)已知:RtABC中,C=90,AC=5.5,A=24,求AB3学生运用解直角三角形知识完全可以独立解决例1教师可请一名同学上黑板做,其余同学在练习本上做,教师巡视 答:斜坡上相邻两树间的坡面距离约是6.0米教师引导学生评价黑板上的解题过程,做到全体学生都掌握2探究活动二例2 如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取ABD=140,BD=52cm,D=50,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线?这是实际施工中经常遇到的问题应首先引导学生将实际问题转化为数学问题由题目的已知条件,D=50,ABD=140,BD=520米,求DE为多少时,A、C、E在一条直线上。学生观察图形,不难发现,E=90,这样此题就转化为解直角三角形的问题了,全班学生应该能独立准确地完成解:要使A、C、E在同一直线上,则ABD是BDE的一个外角BED=ABD-D=90DE=BDcosD=5200.6428=334.256334.3(m)答:开挖点E离D334.3米,正好能使A、C、E成一直线,提到角度问题,初一教材曾提到过方向角,但应用较少因此本节课很有必要补充一道涉及方向角的实际应用问题,出示投影片练习P95 练习1,2。若时间不够,此题可作为思考题请学生课后思考(三)小结与扩展利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案。四、布置作业课本习题P97 9,10一次函数的性质 教学目标: 1、知道一次函数与正比例函数的意义2、能写出实际问题中正比例关系与一次函数关系的解析式3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.教学重点:对于一次函数与正比例函数概念的理解教学难点:根据具体条件求一次函数与正比例函数的解析式教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成y=kx+b的形式一般地,如果函数y=kx+b,其中k不为零,(k是常数, )(括号内用红字强调)那么y叫做x的一次函数特别地,当b时,一次函数 就成为y=kx( k是常数, )3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升 (1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升 分析:y与x成正比例解:(1) y=30x (2) 105(升)4、小结由学生对本节课知识进行总结,教师板书即可.5、布置作业书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论二元一次方程组的解法 教学内容:二元一次方程组的解法和应用.教学目标:1、灵活运用代入消元法和加减消元法解二元一次方程组. 2、能运用二元一次方程的解法解相关的问题.3、使学生进一步提高用代数方法分析问题、解决问题的能力.重点、难点:用二元一次方程组解相关问题.教学过程:(一) 学前准备反馈小测:解方程组:(1)(2)(二) 探究新知例1:已知X+2Y=YX=2X+1求X、Y的值.分析:根据这个连等式,可列出两个方程,而X、Y的值需满足这两个方程,所以应是求这两个方程组成的方程组的解.例2:K为何值时,方程组 2X+3Y=11K X+Y=6K的解也是二元一次方程3X+Y=5的解.分析:因为方程3X+Y=5的解也是方程组的解,所以可以将方程3X+Y=5中Y用53X表示.即Y=53X代入方程组中,从而消去X,得到关于X、K的二元一次方程组,解这个方程组,就可以求出K的值.1、解下列方程组:2、 等式中,当x1时,y2;当x1时,y4.求k、b的值.(三) 课堂小结:作业:练习册解一元一次方程教案 教学目标: 知识技能目标 1.使学生了解一元一次方程的概念,能够灵活运用方程的变形解一元一次方程; 2.使学生正确运用移项法则和去括号法则. 过程性目标 1.体会去括号和移项法则的不同之处; 2.经历解方程的过程,得出解方程的一般步骤. 教学重点:一元一次方程的解法教学过程 一、创设情境 上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析). 4 + x = 7; 3x + 5 = 7-2x; ; x + y = 10; x + y + z = 6; x2 - 2x 3 = 0; x3-1 = 0. 二、探究归纳 比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答) 可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答) 只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程. 第二行的方程的特点是:每一个方程中的未知数都超过一个;第三行的方程的特点是:每一个方程中的未知数的次数都超过一次,根据一元一次方程的定义可知后四个方程都不是一元一次方程. 注意 谈到次数的方程都是指整式方程,即方程的两边都是整式.像 这样就不是一元一次方程. 上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论