对数正态分布(log-normaldistribution).doc_第1页
对数正态分布(log-normaldistribution).doc_第2页
对数正态分布(log-normaldistribution).doc_第3页
对数正态分布(log-normaldistribution).doc_第4页
对数正态分布(log-normaldistribution).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对数正态分布对数正态分布机率 密度 函数=0累积分布函数=0参数值域概率密度函数累积分布函数期望值中位数e众数方差偏态峰态熵值动差生成函数(参见原始动差文本)特征函数is asymptotically divergent but sufficient for numerical purposes在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是正态分布的随机变量,则 exp(X) 为对数分布;同样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。 对于 x 0,对数正态分布的概率分布函数为其中 与 分别是变量对数的平均值与标准差。它的期望值是方差为给定期望值与标准差,也可以用这个关系求 与 目录隐藏 1 与几何平均值和几何标准差的关系 2 矩 3 局部期望 4 参数的最大似然估计 5 相关分布 6 进一步的阅读资料 7 参考文献 8 参见编辑 与几何平均值和几何标准差的关系对数正态分布、几何平均数与几何标准差是相互关联的。在这种情况下,几何平均值等于 exp(),几何平均差等于 exp()。如果采样数据来自于对数正态分布,则几何平均值与几何标准差可以用于估计置信区间,就像用算术平均数与标准差估计正态分布的置信区间一样。置信区间界对数空间几何3 下界 32 下界 21 下界 geo / geo1 上界 + geogeo2 上界 + 23 上界 + 3其中几何平均数 geo = exp(),几何标准差 geo = exp()编辑 矩原始矩为:或者更为一般的矩编辑 局部期望随机变量 X 在阈值 k 上的局部期望定义为其中 f(x) 是概率密度。对于对数正态概率密度,这个定义可以表示为其中 是标准正态部分的累积分布函数。对数正态分布的局部期望在保险业及经济领域都有应用。编辑 参数的最大似然估计为了确定对数正态分布参数 与 的最大似然估计,我们可以采用与正态分布参数最大似然估计同样的方法。我们来看其中用 表示对数正态分布的概率密度函数,用 表示正态分布。因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:由于第一项相对于 与 来说是常数,两个对数最大似然函数 与 在同样的 与 处有最大值。因此,根据正态分布最大似然参数估计器的公式以及上面的方程,我们可以推导出对数正态分布参数的最大似然估计编辑 相关分布 如果 Y = ln(X) 与 ,则 YN(,2) 是正态分布。 如果 是有同样 参数、而 可能不同的统计独立对数正态分布变量 ,并且 ,则 Y 也是对数正态分布变量:。编辑 进一步的阅读资料 Robert Brooks, Jon Corson 以及 J. Donal Wales 的 The Pricing of Index Options When the Underlying Assets All Follow a Lognormal Diffusion,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论